Скачать

Безопасности жизнедеятельности на предприятиях повышенной опасности

Безопасности жизнедеятельности на предприятиях с повышенной опасности

Оглавление

1. Тяжесть труда 2

2. Классификация производственных факторов 7

2.1. Естественные и антропогенные негативные факторы 7

2.2. Производственная среда и ее характеристики 8

2.3. Окружающая и бытовая среда 10

3. Электромагнитное поле. 15

4. Защитное заземление, зануление, отключение 18

4.1. Общие сведения 18

4.2. Защитное заземление 18

4.3. Напряжение прикосновения 19

4.4. Напряжение шага 20

4.5. Измерение сопротивления заземляющего устройства 21

4.6. Зануление 22

4.7. Защитное отключение 23

4.8. Электрическое разделение сетей 24

4.9. Использование малого напряжения 24

4.10. Выравнивание потенциалов 24

5. Режим защиты персонала при работе на лазерах. 25

5.1. Промышленное применение лазеров. 25

5.2. Физиологические эффекты при воздействии лазерного излучения на человека. 26

5.3. Воздействие лазерного излучения на органы зрения. 27

5.4. Защита от лазерного излучения 27

Список литературы 28

1. Тяжесть труда

Трудовая деятельность требует от человека высокой подвижности нервных процессов, быстрых и точных движений, повышенной активности восприятия, внимания, памяти, мышления, эмоциональной устойчивости. Изучение человека в процессе труда осуществляют физиология и психология труда, а также другие науки, как-то: инженерная психология, эргономика, техническая эстетика и др.

Физиология труда - раздел гигиены труда, посвященный изучению изменения функционального состояния организма человека под влиянием производственной деятельности и разработке рекомендаций по организации трудового процесса.

Многообразные формы трудовой деятельности принято условно подразделять на труд физический и умственный. Общепризнанная физиологическая классификация трудовой деятельности включает следующие формы:

Формы труда, требующие значительной мышечной активности, с энергетическими затратами от 17-25 МДж/сутки 4000-6000 ккал/сутки и выше. Это социально неэффективный труд, с низкой производительностью, требующий до 50% рабочего времени отдыха.

Групповые формы труда - конвейер с дроблением процесса на операции, заданным ритмом, строгой последовательностью выполнения операций, с подачей деталей к рабочему месту. Монотонность - основная отрицательная особенность конвейерного труда, приводящая к преждевременной усталости и нервному истощению. Причина в преобладании процесса торможения в корковой деятельности мозга.

Механизированные формы труда с энергетическими затратами 12,5-17 МДж/сутки (3000-4000 ккал/сутки) связаны с уменьшением мышечной деятельности, вовлечением в работу мелких мышц конечностей, характеризуются однообразием локальных действий, малым объемом воспринимаемой информации, монотонностью.

Формы труда, связанные с управлением производственными процессами, при которых человек выполняет функции оперативного звена управления.

Формы интеллектуального труда, характеризующиеся необходимостью переработки большого объема информации, мобилизации памяти, внимания, частотой стрессовых ситуаций, незначительными энергозатратами 10-11,7 МДж/сутки (2400-2000 ккал/сутки), снижением двигательной активности (гипокинезой).

Регуляцию трудовой деятельности осуществляет прежде всего центральная нервная система (ЦНС). Она регулирует деятельность клеток, тканей, органов и системы человеческого организма. Теория центрально-нервной регуляции трудовой деятельности разработана отечественными учеными И.М. Сеченовым, И.П. Павловым, Н.Е. Введенским, Л.А. Ухтомским.

Согласно этой теории психические процессы по своему происхождению - это рефлексы с началом в чувственном возбуждении и концом в мышечном движении. Двигательные реакции человека являются сложными условными рефлексами.

В процессе формирования условного рефлекса выделяются два этапа:

- на 1-ом этапе образования условного рефлекса имеет место возбуждение в ЦНС при участии многих центров коры головного мозга. На этом этапе обучения у рабочего много лишних движений, усилий, ошибок;

- на 2-ом этапе идет подкрепление и усвоение приемов работы, происходит концентрация возбуждения только в соответствующих центрах головного мозга.

Доминантные центры обладают повышенной возбудимостью и способностью к суммации возбуждений, идущих из разных источников. Они первые настраиваются на оптимальный ритм и темп работы. Формирования доминантны сопровождается развитием сопряженного торможения в других областях ЦНС, закреплением четких, экономичных рабочих движений, отсутствием ошибок.

В процессе трудовой деятельности при многократном повторении в определенной последовательности различных раздражителей складывается функциональная система работы коры головного мозга, названная И.П. Павловым динамическим стереотипом, т.е. устойчивой системой рефлексов. Механизм динамического стереотипа заключается в формировании в мозге повторяющихся нервных процессов, программирующих деятельность мозга. По мере закрепления динамического стереотипа возникает автоматизм в действиях рабочего.

Дальнейшим развитием представления о центральной регуляции трудовой деятельности является теория функциональных систем П.К. Анохина, согласно которой любой целенаправленный двигательный акт осуществляется посредством функциональной системы как замкнутого циклического образования с наличием обратной информации о результате действия. Информация о результатах действия поступает в ЦНС и сливается с моделью ожидаемого результата. Происходит оценка результата, и определяется целесообразность поведенческого акта.

Таким образом, формирование динамических мозговых систем определяет совокупность психических процессов в ЦНС, разнообразных двигательных актов, работу систем жизнеобеспечения организма.

Обязательной составной частью трудовой деятельности является мышечная, то есть двигательные действия, включающие динамические и статистические усилия. Источником энергии для сокращения мышц является экзотермическая реакция расщепления АТФ (аденозинтрифосфата). В зависимости от интенсивности работы изменяется механизм ресинтеза АТФ, сущность которого заключается в расщеплении сложных углеводородных соединений и окислении продуктов распада. В результате тренировок в мышцах увеличиваются запасы источников энергии. Процессы распада, ресинтеза энергетических веществ, изменения скорости биохимических процессов контролируются ЦНС.

Энергетические затраты человека связаны с терморегуляцией, с увеличением тяжести труда растет потребление кислорода и количество расходуемой энергии (на 95%): при умственном труде 10,5-11,7 МДж, а тяжелой физической 16,3-18 МДж. При очень тяжелой работе непрерывно нарастает потребление кислорода, и может возникнуть кислородная задолженность, когда в организме накапливаются неокисленные продукты обмена. Рост обмена веществ и расхода энергии приводит к повышению теплообразования, температуры тела на 1-1,5°С. Таким образом, энергозатраты являются критерием физической тяжести труда.

Мышечная работа влияет на сердечно-сосудистую систему, увеличивая кровоток с 3-5 л/мин до 20-40 л/мин для обеспечения газообмена. При этом возрастает число сокращений сердца до 140-180 в мин. и кровяное давление до 180-200 мм рт.ст.

Увеличение интенсивности работы сопровождается ростом воздухообмена (с 5-8 л/мин до 100 л/мин) частотой дыхания (с 10-20 до 30-40 в мин) и долей использования кислорода (с 3-4% до 4-8%). Последнее обуславливается усилием диффузии О; в легкие.

Под действием мышечной работы меняется морфологический состав крови, ее физико-химические свойства: растет число эритроцитов, содержание гемоглобина, усиливается процесс регенерации эритроцитов, увеличивается число лейкоцитов. Эти изменения свидетельствуют об усилении функции кроветворных органов. Определенные изменения при физической работе происходят в эндокринных функциях (повышение содержание в крови адреналина и др.), что способствует мобилизации энергетических ресурсов организма.

Мышечная работа включает статистическую и динамическую.

Статистическая работа - это процесс сокращения мышц, необходимый для поддержания тела или его частей в пространстве. Такая работа связана с фиксацией орудий и предметов труда в неподвижном состоянии, а также с приданием человеку рабочей позы. Статистическая работа более утомительна, чем динамическая. Длительное статистическое напряжение вызывает ослабление кровоснабжения и развитие заболеваний мышечной и нервной системы. Динамическая работа - процесс сокращения мышц, приводящий к перемещению груза, а также тела человека. Энергия расходуется на поддержание напряжения в мышцах и механический эффект работы. Суммарная работа по перемещению груза осуществляются зависимостью.

A = ( PH + PH1/2 + PL/9) - K,

где А - работа, Дж;

Р - масса груза, кг;

Н,Н1 - высота поднятия и опускания груза, м;

L - путь, м;

К - коэффициент, равный 6.

Динамическая работа подразделяется:

- общая - выполняется более чем 2/3 массы скелетной мускулатуры,

- региональная - выполняется мускулатурой плечевого пояса или верхних конечностей,

- локальная выполняется при участии менее 1/3 скелетных мышц.

В условиях научно-технического прогресса увеличивается доля умственного компонента в профессиональной деятельности. Формы умственного труда подразделяют: операторский, управленческий, творческий, преподавателей и медработников, учащихся.

Умственная деятельность проявляется в нейродинамических и нейрофизиологических состояниях мозга, в усилении кровоснабжения мозга, повышении энергетического обмена нервных клеток, изменении биоэлектрической активности мозга. При интенсивной умственной работе мозг потребляет до 15-20% энергии, а суточный расход энергии при умственной работе достигает 10,5-12,5 МДж.

Умственная работа связана с нервным напряжением, которое зависит от значимости, опасности и ответственности работы. При нервном напряжении возникает тахикардия, рост кровяного давления, изменение ЭКГ, увеличение потребления кислорода. Для правильной организации умственной деятельности необходимо: постепенно "входить" в работу: соблюдать ритм, систематичность, чередовать работу с отдыхом, деятельность должна быть систематической.

Характеристикой эффективности деятельности человека является работоспособность, т.е. величина функциональных возможностей человека выполнять работу. Она зависит от субъективных и объективных факторов. В изменении работоспособности в течение рабочего дня установлена определенная закономерность: фаза врабатывания (1,5-2,5ч), высокой устойчивой работоспособности (2+2,5ч), фаза снижения работоспособности. После обеденного перерыва фазы изменения работоспособности повторяются. Для оценки физической работоспособности используют показатель способности к внешней механической работе (Р°С), характеризующий частотой сердечных сокращений при разных нагрузках и измеряемый в ваттах.

В процессе работы у человека возникает утомленное состояние, сопровождающееся чувством усталости, снижением работоспособности, ухудшением показателей работы. Механизм утомления объясняет центрально-нервная теория утомления. Она учитывает влияние процессов, происходящих в работающих мышцах и органах на формирование утомления (недостаток кислорода, накопление метаболитов, истощение питательных веществ и др.). За счет обратных связей изменяется состояние ЦНС, формируется корковая защитная реакция, ограничивающая работоспособность. Физиологические картины физического и умственного утомления сходны. Утомление - это целостный процесс, в нем физическое и умственное утомление взаимосвязаны.

Важное место в деятельности человека имеют его психологические и психофизиологические характеристики, от которых зависит его взаимодействие с факторами производственной среды. Обычно выделяют следующие группы характеристик.

1. Характеристики анализаторов, обеспечивающих прием, передачу и первичный анализ информационных сигналов (сенсорное восприятие). Каждый анализатор имеет центральную часть в коре головного мозга и периферическую часть (рецепторы) для восприятия информации. Анализаторы подразделяют на внешние и внутренние. Внешние это зрительный, слуховой, тактильный, болевой, температурный, обонятельный, вкусовой. К внутренним относятся анализатор давления, кинестетический (рецепторы в мышцах, сухожилиях), вестибулярный и специальные во внутренних органах.

Основными параметрами анализаторов являются:

- Абсолютный порог чувствительности, то есть то минимальное значение воздействующего раздражителя, при котором возникает ощущение.

- Предельно допустимая интенсивность сигнала (близкая к болевому порогу).

- Диапазон чувствительности, включающий все переходные значения раздражителя.

- Дифференциальная чувствительность, то есть минимальное изменение сигнала, восприиимаемое анализатором.

- Число различаемых градаций сигнала.

- Минимальная длительность сигнала, необходимая для возникновения ощущения.

В деятельности человека преобладает зрительная информация (до 90% общего объема), на втором месте стоит звуковая и небольшой объем приходится на долю анализаторов.

2. Инженерно-психологические характеристики, описывающие интеллектуальную деятельность человека. Наибольшее значение из этих характеристик имеют память и мышление.

Память - это процесс запоминания, сохранения, узнавания и воспроизведения информации. Характеристиками памяти являются: объем и скорость запоминания информации, длительность сохранения, полнота и точность воспроизведения.

Мышление - это процесс построения последовательности действий с управляемыми объектами, осуществляемый на основе динамического моделирования этих объектов, их свойств и взаимоотношений. Решение практических задач управления на производстве осуществляется в процессе оперативного мышления, которое является психологической основой принятия решения. Содержанием оперативного мышления является построение структуры ситуации и связывание ее элементов. Сложность решения определяется числом логических условий.

3. Инженерно-психологические характеристики управляющих движений и надежности деятельности. Любое управляющее движение складывается из массы элементарных движений, объединяемых механизмом регуляции ЦНС. Параметры управляющих движений включают пространственные, скоростные и силовые. Пространственные параметры - это размах (амплитуда) и траектория движения. Силовые параметры определяются усилием, развиваемым в процессе движения.

Под надежностью человека понимается вероятность безопасной работы. По вине человека происходят от 20 до 95% отказов в системе "человек-машина". Поэтому необходим учет факторов, влияющих на надежность человека: организация рабочего места, освещение, конструкция технологического оборудования и т.п.

Временные характеристики определяют время выполнения человеком отдельных действий. Для определения временных характеристик имеются таблицы, содержащие время выполнения различных действий и движений. При выполнении экстренных действий необходим учет скрытого времени от момента возникновения раздражителя до начала реакции на него. На время решения задач оказывает взаимное влияние выполняемых действий.

4. Антропометрические характеристики определяют размеры тела человека и его отдельных частей. Они необходимы при конструировании промышленных изделий и рабочих мест, организации труда и других работ в области научной организации труда. Антропометрические характеристики подразделяют на динамические, характеризующие движения, зоны досягаемости, и статические, к которым относятся размеры человека в статическом положении.

Для сравнения различных видов труда, проведения оздоровительных мероприятий необходима оценка тяжести труда.

Тяжесть труда - интегральное понятие, выражающее степень функционального напряжения организма при трудовом процессе. Функциональное напряжение может быть энергетическим при физическом труде и эмоциональным при умственном труде. Соответственно нагрузка на организм при мышечных усилиях классифицируется как физическая тяжесть труда, при эмоциональной нагрузке как нервная напряженность.

На практике используется несколько классификаций тяжести и напряженности труда. Каждая классификация имеет свое назначение. Так, в гигиене труда используется подразделение тяжести труда по степени мышечной и нервной нагрузки: 4 категории, определяемые по эргономическим критериям тяжести и напряженности труда (показатель мышечной и нервной нагрузки). Для оценки гигиенической эффективности проводимых оздоровительных мероприятий условия труда подразделяются на 3 класса (оптимальные, предельно допустимые, вредные и опасные).

При определении льгот и компенсаций за неблагоприятные условия труда используется нормирование гигиенических критериев оценки условий труда по показателям вредных и опасных факторов. Условия труда по степени вредности и опасности подразделяют на четыре класса:

I класс. Оптимальные условия для сохранения здоровья и высокой работоспособности.

II класс. Допустимые условия с уровнем действующих факторов, не превышающих нормы.

III класс. Вредные условия, оказывающие негативное воздействие на работающих. Они подразделяются:

- 1 степень вредности (вызывают обратимые изменения в организме);

- 2 степень вредности (вызывают стойкие изменения в организме);

- 3 степень (вызывают профессиональную патологию в легкой форме);

- 4 степень вредности (вызывают выраженную форму профзаболеваний).

IV класс. Опасные (экстремальные) условия, которые создают угрозу жизни в течение рабочей смены.

Из анализа деятельности человека и его физиологических характеристик вытекают основные мероприятия, направленные на уменьшение утомления человека:

1. Рациональная организация рабочего места и мебели, которая заключается в соответствии их антропометрическим данным и психологическим возможностям человека. При этом должна быть принята оптимальная поза, размеры рабочего места должны соответствовать эргономическим рекомендациям.

2. Важным средством предупреждения утомления являются упражнения и тренировка. Они обеспечивают совершенствование умений и навыков, придают законченность и устойчивость всем формам двигательной активности. При этом происходит процесс приспособления функций человеческого организма для наиболее эффективного выполнения конкретной работы.

3. Рациональный режим труда и отдыха обеспечивает высокую производительность труда и работоспособность без признаков чрезмерного утомления. Задача решается за счет оптимального чередования периодов труда и отдыха.

4. Производственная физическая культура, основанная на феномене активного отдыха.

5. Функциональная музыка вызывает положительный эмоциональный настрой, необходимый для любой работы.

6. Комнаты психофизической разгрузки, проводящие сеансы по снятию усталости и нервно-психического напряжения.

2. Классификация производственных факторов

2.1. Естественные и антропогенные негативные факторы

Человек в процессе жизнедеятельности непрерывно взаимодействует со средой обитания, со всем многообразием факторов, характеризующих среду. Многие факторы среды обитания оказывают негативное воздействие на здоровье и жизнь человека. Степень негативного воздействия определяется уровнем их энергии, под которой понимается количественная мера различных форм движения материи. В настоящее время перечень известных форм энергии существенно расширился: электрическая, потенциальная, кинетическая, внутренняя, покоя, деформированного тела, газовой смеси, ядерной реакции, электромагнитного поля и т.д.

Всем формам энергии свойственна закономерность превращения их в другие формы. Все явления связаны законом сохранения энергии и тенденцией к снижению уровня энергии за счет перехода в другие формы. Снижение уровня энергии связано с выходом (утечкой) энергии. Неконтролируемый выход энергии порождает негативные факторы в окружающей среде. Источники энергии подразделяются на природные и антропогенные. К природным источникам относятся молнии, извержения, землетрясения, атмосферные явления (ураганы, смерчи и т.п.) и другие. Антропогенные источники создаются человеком. В ходе научно-технической революции появились источники, обеспечивающие очень высокие уровни энергии, существенно расширился перечень известных форм энергии и их характеристика.

Бурный рост энерговооруженности труда повлек расцвет энергетики и разработки энергетических ресурсов. В обществе появились колоссальные энергосистемы, представляющие совокупность источников энергии и устройств для ее передачи и распределения. Концентрация в современном производстве источников энергии, высокие уровни энергии, использование ранее неизвестных форм энергии определяют растущую актуальность и важность проблемы безопасности в современном производстве. Высокие уровни используемой энергии, многообразие форм энергии существенно увеличили вероятность неконтролируемого выхода энергии, опасность воздействия негативных факторов на человека. Эту тенденцию можно характеризовать энтропией источника энергии, понимая под энтропией вероятность пребывания системы в данном состоянии: чем выше уровень энергии объекта, тем меньше его энтропия. При отсутствии энергетического источника энтропия объекта приобретает максимальное значение, и обеспечивается наибольшая вероятность пребывания объекта в этом состоянии.

Разнообразие форм энергии порождает многообразие факторов среды обитания человека, воздействующих на его здоровье. Все многообразие производственных факторов согласно ГОСТ 12.0.003-74 подразделяют на несколько групп: физические, химические, биологические и психофизиологические. К физическим опасным и вредным факторам относятся: движущиеся машины и механизмы, повышенная запыленность и загазованность, повышенная или пониженная температура, повышенный уровень шума, вибрации, ультразвука, повышенное или пониженное барометрическое давление, повышенная или пониженная влажность, подвижность воздуха, повышенный уровень ионизирующих или электромагнитных излучений и т.д. Химические опасные и вредные факторы подразделяются на токсические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные. Биологические факторы включают: бактерии, вирусы, риккетсии, спирохеты, грибы и простейшие, а также растения и животных. Психофизиологические факторы подразделяют на физические и нервно-психические перегрузки. Один и тот же опасный и вредный фактор может по своему действию относиться к различным группам.

2.2. Производственная среда и ее характеристики

На производстве ежегодно погибает около 15 тыс. чел. и травмируется примерно 670 тыс. чел. По данным зам. председателя СМ СССР Догуджиева В.Х. в 1988 г. в стране произошло 790 крупных аварий и 1 млн. случаев группового травматизма. Этим определяется важность безопасности деятельности человека, которая отличает его от всего живого-Человечество на всех этапах своего развития серьезное внимание обращало на условия деятельности. В трудах Аристотеля, Гиппократа (III-V) век до н.э.) рассматриваются условия труда. В эпоху возрождения медик Парацельс изучал опасности горного дела, итальянский врач Рамаццини (XVII век) заложил основы профессиональной гигиены. И интерес общества к этим проблемам растет, так как за термином "безопасность деятельности" стоит человек, а "человек есть мера всех вещей" (философ Протагор, V век до н.э.).

Деятельность - это процесс взаимодействия человека с природой и антропогенной средой. Совокупность факторов, влияющих на человека в процессе деятельности (труда) в производстве и в быту, составляют условия деятельности (труда). Причем действие факторов условий может быть благоприятным и неблагоприятным для человека. Воздействие фактора, могущее составить угрозу жизни или ущерб здоровью человека, называется опасностью. Практика свидетельствует, что любая деятельность потенциально опасна. Это аксиома о потенциальной опасности деятельности.

Каждое производство характеризуется своим комплексом опасных и вредных факторов, источниками которых являются оборудование и технологические процессы. Современное машиностроительное предприятие, как правило, включает литейные и кузнечно-прессовые, термические, сварочные и гальванические, а также сборочные и окрасочные цеха.

Основными производственными факторами в литейных цехах являются: пыль, выделяющиеся пары и газы, избыточная теплота, повышенный шум и вибрация, электромагнитные излучения, повышенное напряжение в электрических цепях, движущиеся машины и механизмы. Пыль литейных цехов в основном мелкая (до 62-87%) с размером пылинок до 2 мкм. Большая часть пыли составляет диоксид кремния, входящий в формовочные и стержневые смеси. К газам и парам, загрязняющим воздух литейных цехов, относят: акролеин, ацетон, ацетилен, бензол, оксид азота и углерода, выделяющийся при плавке. Значительная избыточная теплота выделяется технологическим оборудованием, примерно 14-62% общего расхода теплоты на расплавление металла. Интенсивность теплового потока на ряде рабочих мест достигает 0,5-11 кВт/м2. Значительная часть оборудования литейных цехов является источником высокой звуковой мощности.

В кузнечно-прессовых цехах в воздухе имеют место масляные аэрозоли, продукты сгорания смазки, сернистый газ, оксид углерода, сероводород и др. Концентрация пыли в воздухе рабочей зоны достигает 3,9-138 мг/м3 около прессов и молотов. В цех попадает до 10% количества вредных веществ от сгорания топлива. Интенсивность теплового потока у нагревательных печей, прессов и молотов составляет 1,4-2,1 кВт/м2. Амплитуда вибрации фундамента молота составляет 0,56-1,2 мм. Опасность поражения током возникает у нагревательных печей, потребляющих мощности 15-330 кВт при напряжении 50-80 В. У печей индукционного нагрева напряженность магнитного поля (8-10 А/м) превышает допустимые величины. Большое количество движущихся механизмов, перемещаемых материалов создают опасность травмирования работающих.

Характеристики опасных и вредных факторов при термической обработке определяются используемым оборудованием, видом термической обработки, применяемыми рабочими средами. Токсичными газами в термических цехах являются оксид углерода, аммиак, диоксид серы, сероводород, бензол, цианид. На ряде рабочих мест интенсивность теплового потока составляет 1,11-3,13 кВт/м2. В электротермическом оборудовании используется повышенное значение напряжения. На высокочастотных установках имеет место повышенная напряженность электрического и магнитного полей. Толкательные печи, дробеструйные установки, газовые горелки создают высокий уровень шума. Использование в термических цехах контролируемых атмосфер, печей-ванн, масел для нагрева и охлаждения сопряжено со взрыво-пожароопасностью.

В гальванических цехах источниками опасности являются технологические процессы подготовки поверхности, приготовления растворов и электролитов, нанесение покрытий. Методы очистки поверхностей характеризуются повышенной запыленностью, шумом и вибрацией. Используемые для приготовления растворов щелочи, кислоты, соли при воздействии на организм могут вызвать отравление или профзаболевание. Использование ручного виброинструмента для шлифования поверхностей может быть причиной виброболезни. Работа на ультразвуковых ваннах очистки сопряжена с воздействием на работающего звуковых и ультразвуковых колебаний.

Сварочное оборудование является источником повышенной запыленности и загазованности, ультрафиолетового и инфракрасного излучения, электромагнитных полей, ионизирующих излучений, шума и ультразвука. Сварочные аэрозоли содержат окислы различных металлов, а также токсичные газы (оксиды углерода, озон, фтористый водород, оксиды азота и др.). Сварочная дуга является источником инфракрасного и ультрафиолетового излучения. Высокочастотная сварка сопровождается образованием электромагнитных полей, а при работе электронно-лучевых установок возникают ионизирующие излучения. К опасным факторам сварочных процессов следует отнести электрический ток, искры и брызги расплавленного металла, возможность взрыва баллонов.

Основными производственными опасностями при механообработке являются: движущиеся части оборудования, перемещающиеся изделия, стружка, повышенное напряжение электричества, а также запыленность и загазованность воздуха рабочей зоны. При обработке хрупких материалов стружка разлетается на расстояние 3-5 м. Обработка сплавов, содержащих свинец, сопровождается образованием токсичной пыли. Нагревание полимерных материалов при обработке вызывает образование вредных углеводородов. Аэрозоли СОЖ вызывают раздражение верхних дыхательных путей.

Источниками производственных опасностей в сборочных цехах являются: пневмоэлектрический инструмент, перемещающиеся изделия, движущиеся части конвейера. Они являются причиной травматизма, высокого уровня шума. Органические растворители, используемые для очистки сборочных единиц, создают опасность отравления и возникновения пожара.

Многообразны производственные опасности при окрасочных работах; токсичные лакокрасочные материалы, образование в рабочей зоне лакокрасочных аэрозолей, выделение паров растворителей (ароматические и хлорированные углеводороды). Особую опасность представляют собой пигменты, содержащие свинец и его соединения. Ряд производственных опасностей обусловлены эксплуатацией окрасочного оборудования: движущиеся механизмы, передвигающиеся окрашиваемые изделия, шум, вибрация, ультразвук при подготовке поверхностей изделий, ультрафиолетовое и инфракрасное излучение при работе сушильного оборудования, статическое электричество при окрашивании в электростатическом поле, взрыво-пожароопасность ряда процессов подготовки и окраски поверхностей.

Рост промышленного производства сопровождается непрерывным ростом воздействия производственной среды на биосферу. Считается, что каждые 10-12 лет объем производства удваивается, соответственно также возрастает объем выбросов в окружающую среду: газообразных, твердых и жидких, а также энергетически. При этом имеет место загрязнение атмосферы, водного бассейна и почвы.

Анализ состава загрязнений, выбрасываемых в атмосферу машиностроительным предприятием, показывает, что, кроме основных загрязнений (СО, SO2, NОn, СnНm, пыль), в выбросах содержатся токсичные соединения, оказывающие значительное отрицательное воздействие на окружающую среду. Концентрация вредных веществ в вентиляционных выбросах невелика, но общее количество вредных веществ значительно. Выбросы производятся с переменной периодичностью и интенсивностью, но ввиду небольшой высоты выброса, рассредоточенности и плохой очистки они сильно загрязняют воздух на территории предприятий. При малой ширине санитарно-защитной зоны возникают трудности в обеспечении чистоты воздуха в жилых зонах.

Существенный вклад в загрязнение атмосферы вносят энергетические установки предприятия. Они выбрасывают в атмосферу СО2, СО, сажу, углеводороды, SO2, SO3, PbO, золу и частицы несгоревшего твердого топлива.

На долю машиностроительных предприятий приходится около 10% общего промышленного водопотребления. Машиностроительное предприятие сбрасывает три вида сточных вод: производственные, бытовые и атмосферные. В производственных сточных водах содержатся механические примеси органического и минерального происхождения, в том числе гидроксиды металлов, стойкие и Летучие нефтепродукты, эмульсии, токсичные соединения органического и неорганического происхождения (ионы металлов, фенолы, цианиды, сульфаты, сульфиды и др.). Бытовые сточные воды по составу и концентрации загрязняющих веществ подобны городским сточным водам. Атмосферные сточные воды образуются в результате смывания атмосферными осадками загрязнений, имеющихся на территории предприятия (металлическая стружка, пыль, сажа, нефтепродукты).

Твердые отходы в машиностроении образуются в процессе производства в виде амортизационного лома, стружки и опилок, шлаков и золы, шламов, осадков и пыли. На предприятиях машиностроения отходы составляют порядка 260 кг на тонну металла. Это отходы литейного производства, механической обработки. Концентрация твердых частиц в шламах отстойников очистных сооружений от 20 до 300 г/л. Шламы термических, литейных цехов содержат токсичные соединения (свинец, хром, цианиды и т.п.).

Важной составной частью воздействия машиностроительного предприятия на атмосферу являются энергетические излучения. К ним относится шум, создаваемый технологическим оборудованием (испытательные станции, вентиляционные и др. установки).

Шум, создаваемый промышленным предприятием, не должен превышать предельно допустимых спектров. На предприятиях могут работать механизмы, являющиеся источником инфразвука (двигатели внутреннего сгорания, вентиляторы, компрессоры и т.п.). Допустимые уровни звукового давления инфразвука установлены санитарными нормами. Технологическое оборудование ударного действия (молоты, прессы), мощные насосы и компрессоры, двигатели являются источниками вибраций в окружающей среде. Вибрации распространяются по грунту и могут достигать фундаментов общественных и жилых зданий.

2.3. Окружающая и бытовая среда

Бурное развитие производственных сил, вызванное НТР, сопровождается стремительным ростом отрицательного антропогенного воздействия на окружающую среду, "биосферу", что приводит к деградации биосферы.

Элементы окружающей среды, оказывающие существенное влияние на живой организм, называются экологическими факторами. Их подразделяют на две группы: абиотические (факторы неживой среды) и биотические (связанные с влиянием живых существ). К абиотическим факторам относятся климатические, топографические, гидрофизические, гидрохимические, эдафизические (совокупность свойств почвы).

Возникновение и развитие опасных и вредных факторов в среде обитания связано с процессами, идущими в обществе. К числу основных процессов, определяющих формирование опасных и вредных факторов следует отнести: демографический взрыв, урбанизацию, научно-технический прогресс, развитие энергосистем и промышленного производства и др.

Проблема отношения человека и окружающей среды - это одна из наиболее сложных проблем общества: человек - биосоциальное существо. Его взаимодействие с природой необходимо рассматривать через систему общественных отношений. Благодаря НТР человечество вовлекает в производство природные ресурсы во всевозрастающем масштабе. Этому способствует стремительный рост численности населения; в 1650 г. население Земли составляло порядка 500 млн. человек, а сейчас свыше 4 млрд.

Воздействие 4 млрд. человек сегодня по своим масштабам равно воздействию 30-40 млрд. людей каменного века. В процессе производственной деятельности человек освоил 55% территории суши, а на 1/5 части суши изменил ландшафт. Во многих странах использование водных ресурсов достигло 50-65%.

Промышленная революция ускорила процесс урбанизации - сосредоточение промышленности и населения в крупных городах. Так, с 1920 г. по 1960 г. городское население мира увеличилось втрое и к 2000 г. предположительно составит 3 млрд. человек. Следствием урбанизации явилось возникновение гигантских жилых и промышленных районов с населением в десятки миллионов человек (Рур, Токио, Донбасс и др.). В больших городах на 15% меньше солнечной радиации, на 10% больше дождя и снега, на 10% больше облачных дней, на 30-100% больше тумана. В городах изменяются все компоненты природной среды, в том числе гравитационного, электромагнитного и термического полей Земли.

Быстро растет потребление энергии. Через