Скачать

Выделение споровых микроорганизмов грунта пещеры Баскунчакская (Астраханской области)

Пещеры представляют собой элементы неживой природы, специфический подземный ландшафт, который существовал задолго до человека и имеет право на существование в настоящем как компонент ландшафтной оболочки планеты. Это среда обитания специфической фауны, часть из которой живет в них постоянно (троглобионты), а часть временно (троглофилы). Из-за стабильности климатических условий, сохраняющихся в полостях в течение длительного времени, среди пещерной фауны много эндемичных видов (http://www.ecocave.ru).

Пещеры являются геологическими памятниками природы; в которых можно изучать естественные обнажения горных пород, отбирать образцы для геологических, инженерно-геологических и геофизических исследований, прослеживать внутреннюю структуру залегания горных пород, их изменчивость, тектонические нарушения, ископаемую фауну и др. В пещерах открыт естественный доступ к водоносному горизонту, областям формирования и питания источников, питьевых и промышленных вод, существует возможность изучения формирования химического состава подземных вод. Пещеры имеют палеогеографическое значение: в них сохраняются следы давно минувших эпох, которые, как правило, уничтожены на поверхности земли; на основании изучения рыхлых отложений пещер, их строения и ледяных образований в них можно судить об истории развития не только пещеры, но и окружающей её местности. Многие пещеры имеют реакрационное значение и используются в качестве туристических объектов

На территории Астраханской области, в районе озера Баскунчак, находятся около 25 пещер карстового происхождения. Самая крупная и наиболее посещаемая из них, это пещера Баскунчакская (http:// www.ecocave.ru).

Поэтому целью работы стало исследование микробиологического пейзажа грунта пещеры Баскунчакская, для изучение рекреационного влияния, оказываемого на нее, как на объект туристического значения. Для осуществления целей исследования были поставлены следующие задачи:

1. определение численности и видового состава сапрофитной микрофлоры грунта пещеры Баскунчакская;

2. Определение санитарного состояния грунта пещеры Баскунчакская (на основе определения БГКП)


Глава 1 Литературный обзор

1.1 Пещера Баскунчакская как объект различного рода исследований

Пещера Баскунчакская - крупнейшая гипсовая пещера Прикаспийской карстовой области. Пещера горизонтального типа, имеет протяженность- 1480 м, максимальная глубина - около 32 м. Пещера известна и посещаема людьми более ста лет. Одна из надписей на стене привходовой части пещеры датирована 1874 г. Первые опубликованные исследования относятся, видимо, к 1947 г. По его данным, длина пещеры Большой Баскунчакской составляла 350 м (Белононич, Цой , 1998).

История современных исследований пещеры с 1979 г связана в основном с деятельностью Саратовской спелеологической секции. Секция спелеологов в саратовском университете была образована в декабре 1978 г. по инициативе студентки Сосновской Р.Л. и свои первые серьезные исследования начала в Баскунчакской пещере осенью 1979 г. В дальнейшем на протяжении почти двух десятков лет пещера является одним из основных исследовательских и учебно-тренировочных полигонов, любимой пещерой для всех поколений саратовских спелеологов. При всем многообразии широте научных исследований, спортивных, экскурсионных экспедиций, слетов и соревнований, проведенных здесь спелеологами Саратова и других городов Поволжья, эта пещера является слабо изученной объектом. С 1979 по 1998 г. саратовские спелеологи посещали пещеру Баскунчакскую более 30 раз (Белононич, Цой , 1998).

Для подтверждения наличия подземного хода, соединяющего оба сифона, в 1983 г. на поверхности были проведены геофизические исследования. Использовался метод вертикального электрического зондирования по нескольким профилям. Интерпретация геофизических данных позволяет предположить наличие искомого непройденного хода, вероятно, залитого водой (Белононич, Цой , 1998).

Несмотря на ариадность климата Прикаспия (200-300 мм осадков в год), в некоторые годы при резком снеготаянии в пещере возможны мощные паводки. Продолжительность их не более 2-3 дней в году и поэтому наблюдать паводок в Баскунчакской пещере непросто. Для установления высоты подъема пещерных вод проводился специальный эксперимент: в тальвеги запускались мелкие пенопластовые шарики, которые после спада поводковых вод частично оставались на стенах и потолке, указывая уровень стояния воды. В марте 1994 г. одному из авторов удалось наблюдать такой паводок. При резком снеготаяние многие воронки в верховьях Пещерной балки превратились поглощающие водяные потоки поноры, а во вход №2 втекал мощный ручей из тальвеги балки. В пещере с потолка в некоторых местах низвергались водопады, а многие пониженные участки, особенно дальняя часть Основной Галереи, были полностью затоплены (Белононич, Цой , 1998).

В пещере также проводились микроклиматические исследования, которые включали в себя наблюдения за температурой воздуха в Основной Галерее и вдоль тальвега лабиринтовой части пещеры. Наблюдения проводились круглосуточно с интервалом между замерами в 3-4 часа в течение 1-2 суток в разные месяцы 1979-1981 гг.: в октябре, ноябре, феврале, марте и мае. Целью наблюдений было не только получение характерных и экстремальных значений метеопораметров, но и режимные исследования температуры воздуха: суточный и сезонный ход температуры в зависимости от удаленности от входа; вертикальные градиентные измерения (Белононич, Цой , 1998).

Температура почвы (аллювиальных отложений) в пещере в целом отличается от температуры воздуха не более чем на 0,2-0,5 ◦C. Влажность воздуха меняется в зависимости от внешних условий лишь до 50-60 м от входа, далее ее значения близки к 100% (97-98%) (Белононич, Цой , 1998).

В Баскунчакской пещере неоднократно проводились целенаправленные поиски спелеофауны, в результате которых пещерных обитателей (троглобионтов) обнаружено не было. Однако в пещере встречаются случайно попавшие или временно живущие под землей (троглоксены и троглофилы) виды животных (Белононич, Цой , 1998).

Постоянной колонии летучих мышей в пещере нет, однако она может использоваться как временное убежище при миграциях этих животных. Была поймана одна летучая мышь (рыжая вечерница).

Часто в Основной Галерее встречаются желтобрюхие полозы. Данный вид полоза широко распространен в окрестностях пещеры и большей частью, видимо, в пещеру случайно (Белононич, Цой , 1998).

Довольно многочисленны в пещере Баскунчакской грызуны подсемейства Хомяковых. Один экземпляр большой песчанки был выловлен живоловкой. Проникновение их в глубь пещеры, видимо, объясняется появляющимися на месте подземного спелеолагеря отбросами (Белононич, Цой , 1998).

Иногда встречаются различные беспозвоночные (пауки, многоножки, мокрицы), то есть виды, приспособленные к обитанию во влажной и прохладной среде. Растения представлены мхами и лишайниками в привходовой части пещеры (Белононич, Цой , 1998).

Микробиологических исследований в пещере Баскунчакская не проводилось. Однако подобного рода исследования проводились в пещере Мраморная, в пещере Большая Орешная и в Воронцовской системе пещер.

1.2 Исследования карстовых пещер по микробиологическим показателям

Пещера Мраморная расположена в приброочной части северо-западного замыкания плато Чатыр-Даг. Обнаружена Симферопольскими спелеологами в 1987 году (http:⁄⁄ www.ecocave.ru).

С целью оценки микробиологической обстановки пещеры Мраморная проводились определения качественного и количественного состава микрофлоры грунта и воздуха. Отбор производился в пяти стационарных точках, расположенных в пределах Галереи сказок. Кроме упомянутых точек пробы отбирались: в нижнем этаже и в Люстровом зале. В этих двух точках отбирались только пробы грунта. Отбор проб, анализ и обработка полученных материалов производились сотрудниками ИМР АН Украины.

 Отбор проб грунта осуществлялся по общепринятой методике, в стерильные мешочки. После доставки проб в лабораторию определялись влажность образцов, готовилась серия последовательных разведений из проб грунта и осуществлялся посев известным образом, контроль за микробиологической обстановкой проводился в элективных средах:

1. Эшби - для выделения азотфиксирующих микроорганизмов;

2. МПА - для выделения гетеротрофов, развивающихся на органическом субстрате;

 3. Чапека - для выделения микроскопических грибов;

 4. Среда Тамия - для выделения микроводорослей.

 Кроме исследований в упомянутых точках, были исследованы образцы микрофлоры, отобранные на сталактитах, и грунте в Люстровом зале Пятна плесени на месте подземного лагеря были обнаружены здесь визуально при исследовании пещеры 16 июля 1990 года

 При первых двух отборах среди изучаемых групп микроорганизмов наиболее представительными были гетеротрофные бактерии и актиномицеты. В числе гетеротрофов доминируют бациллы: Bac.megaterium, Bac.suрtiles, Bac.mesentericus.

Микроскопические грибы практически отсутствовали в грунте пещеры и были немногочисленны в воздухе. Микрофлора, выделявшаяся на среде Тамия, была представлена, в основном, автотрофными микроорганизмами (растущими на минеральном субстрате). Микроводоросли на период 06.04.-16.07.90г. обнаружены не были. Численность микроорганизмов в указанный период была на 1-2 порядка выше в грунтах, чем в воздухе

 Результаты третьего обследования, 20.09.90 г. показали: тенденция к нарастанию микроорганизмов по исследуемым группам микрофлоры сохранилась. Особенно возросла численность грибов и гетеротрофных микроорганизмов, плотность которых отмечалась на площадке у входа. По - видимому, эта закономерность является результатом эксплуатации пещеры в качестве экскурсионного объекта.

Недавние исследования, проведенные в Туркменистане и южных районах США, показали, что неконтролируемое посещение пещер приводит к накоплению в них опасных для человека бактерий, в первую очередь - возбудителей кишечных и легочных инфекций. В пещерах Средней Азии, кроме этого, обнаружены патогенные грибы р.р. Penicillium, Aspergillus, Nannizzia. Несмотря на то, что в Красноярском крае имеются десятки активно посещаемых пещер, микробиологический мониторинг в них полностью отсутствует.

 Для выделения бактерий и грибов, представляющих естественную микрофлору пещеры, использовали среды МПА и модифицированную среду Чапека. Культивирование осуществляли при температуре +3 °С, что соответствует естественным условиям пещеры и предотвращает рост мезофильных микроорганизмов, случайно занесенных с поверхности. Учет численности микроорганизмов и описание колоний проводили через 3-4 недели культивирования (http:⁄⁄ www.ecocave.ru).

Для учета санитарно-показательных микроорганизмов (бактерии группы кишечной палочки) использовали среду Эндо, учет результатов проводили через 2 суток культивирования при температуре +37°С. Учитывали окрашенные в красный цвет колонии, состоящие из грам-отрицательных, оксидазоотрицательных палочек (http:⁄⁄ www.ecocave.ru).

Проведенные нами исследования показали, что в пещере Большая Орешная присутствуют, по крайней мере, три различные группы микроорганизмов(http:⁄⁄ www.ecocave.ru).

Первая группа - это психрофильные бактерии, являющиеся естественными обитателями пещеры. Их численность варьирует в пределах 104 - 106 микробных клеток на 1 г грунта в зависимости от места взятия образца. Среди бактерий данной группы отмечены представители р. Arthrobacter, Pseudomonas и др. Очевидно, данные бактерии безопасны для человека в силу неспособности к росту при температуре человеческого тела, однако представляют несомненный научный интерес (http:⁄⁄ www.ecocave.ru).

Вторая группа - это мезофильные бактерии, особенно многочисленные в активно посещаемых участках пещеры. Численность мезофильных бактерий в некоторых пробах воды составила до 105 микробных клеток на 1 мл. Следует предположить, что бактерии данной группы занесены с поверхности человеком. Особое беспокойство вызывает обнаружение в пробах грунта и воды бактерий группы кишечной палочки в количествах, в десятки и сотни тысяч раз превышающих санитарные показатели. Это свидетельствует об исключительно высоком уровне фекального загрязнения пещеры и как следствие - о непригодности многих источников воды для питья.

Третья группа выявленных в пещерах микроорганизмов представлена плесневыми грибами р. Penicillium, Mucor и др. Данные микроорганизмы в значительном количестве (104 - 105 клеток/гм грунта) присутствуют в гротах с высоким уровнем антропогенного загрязнения. В остальных участках пещеры грибы обнаруживаются в виде единичных колоний размером от нескольких мм до десятков см преимущественно на высокомолекулярных субстратах. Учитывая, что среди представителей выявленных родов встречаются возбудители микозов человека, высокая концентрация плесневых грибов вблизи подземных стоянок спелеотуристов может представлять реальную опасность. Таким образом, по крайней мере, две группы микроорганизмов, обнаруженных в пещере Большая Орешная, могут представлять угрозу для здоровья посетителей пещеры (http:⁄⁄ www.ecocave.ry).

Воронцовская система пещер, расположена на территории Сочинского национального парка, ее официальное экскурсионное освоение начато с 2000 года ООО "Воронцовские пещеры". Этот район всегда активно посещался спелеотуристами, с некоторой неравномерностью в течение года. Пик посещений приходился на новогодние праздники и зимние студенческие каникулы, майские праздники, а также летние месяцы, т. е. периоды традиционных спелеовыездов. После того, как была проложена асфальтовая дорога и оборудованы пещеры, район стал более доступным, что привело к увеличению количества туристов. Особенно велика антропогенная нагрузка в летние месяцы. В течение многих лет исследованием Воронцовского карстового участка занималась секция спелеологии Санкт-Петербургского горного института. Ими проводилась гидрогеологическая и гидрохимическая съемка района (Ю. С. Ляхницкий, 2003 г; "Карст и пещеры Кавказа"), однако микробиологическое загрязнение не учитывалось.

Во время проведения спелеоклубом МГУ спелеошколы была начата работа по оценке антропогенного влияния на Воронцовскую систему пещер. С целью предварительной оценки микробиологического состояния пещеры было проведено определение количественного и качественного состава микрофлоры воды в пещерах и на поверхности. Точки отбора проб выбирали таким образом, чтобы охватить как активно посещаемые, так и труднодоступные участки пещеры, а также с учетом общего водотока района и возможных поверхностных источников загрязнений.

Помимо источников на поверхности были взяты пробы из грота Прометей, Грота Пантеон, Грота Очажный, Хода Жилина, Разгрузочного района, Обвального зала из Главной галереи, пещер Долгой и Кабаний провал.

Были выбраны стандартные критерии оценки: общее количество бактериальных клеток и количество клеток бактерий группы кишечной палочки в единице объема воды; а также состав мезофильной флоры.

Определение общего числа клеток проводили методом прямого подсчета клеток в окрашенных мазках.

Наличие и численность бактерий группы кишечной палочки определяли методом высева на чашки со средой MacConkey s agar при температуре 36 С.

Количественную обработку данных проводили с использованием статистики Пуассона.

Качественный анализ проводили, высаживая, бактерии на селективные среды при температуре 25-36С с целью определения видов, находящихся в состоянии покоя, но представляющих потенциальную опасность для человека. В результате определен следующий состав мезофильных микрорганизмов: Streptomyces; Pseudonocardia; Nocardioides; Acinetobacter; Pseudomonas; Arthrobacter; Bacillus.

Количество бактерий группы кишечной палочки в разных пробах колеблется от 0.1 до 4 клеток на мл, что превышает допустимые нормы для питьевой воды (на 1 литр 3 шт. - 0.003 на 1 мл), но не превышает нормы для технической воды (5000 на 1 литр - 5 на мл). Общее содержание бактерий для питьевой воды в норме 100 на 1 мл, в Воронцовской системе пещере этот показатель превышен в среднем в 3-4 раза. Можно говорить об общем загрязнении водотока района. Для определения источников загрязнения планируется провести учет туристических стоянок и прочих возможных источников загрязнения на поверхности, а также повторные микробиологические исследования. Особое внимание было уделено состоянию оборудованной части пещеры, это участок от грота Прометей до грота Пантеон.

В местах нахождения ламп на известняке образовались сизые пятна грибов, растущих по стенам, размеры пятен достигают полуметра, особенно сильно они развиваются если лампы установлены в нишах, за выступами породы, где плохая вентиляция. Грибы определены как представители рода Penicillium. Также под лампами обнаруживается так называемая "ламповая флора", в состав которой входят сине-зеленые, диатомовые водоросли и даже мхи.

В условиях карстового ландшафта существуют потоки вещества и энергии между наземными элементами ландшафта и глубинным карстом. Несмотря на это, пещерные местообитания характеризуются рядом специфических условий, существование которых должно приводить к изменениям характеристик экологической целесообразности жизнедеятельности организмов.

Прежде чем приступить к анализу экологических условий пещерных местообитаний, мы задали себе вопрос о путях возможной эволюции в пещерах. С одной стороны, это может быть "эволюция смерти", когда происходит выживание организмов, обладающих максимальной резистентностью, а структура сообществ при этом деградирует. С другой стороны, это может быть "эволюция жизни", когда происходят последовательные изменения, приводящие к формированию адаптированных видов, не похожих на наземные аналоги.

В первом случае таксономический набор пещерных видов не будет сильно отличаться от характерной зональной флоры и фауны. Второй случай реализуется, если под землей содержатся нетривиальные источники энергии, или экстремальные местообитания, или, если карст прошел длительную эволюцию, на последних стадиях которой связи с дневной поверхностью были ослаблены. Все три варианта имеют место, например, в реликтовых полостях на большой глубине в аридных регионах.

Переходя теперь конкретно к пещерам Пинеги, попробуем сформулировать: какие же именно факторы составляют специфичность пещерных местообитаний.

Во-первых, следует рассмотреть степень олиготрофности. Мы полагаем, что, несмотря на кажущуюся обедненность органическим веществом, пещеры Пинеги нельзя считать экстремально олиготрофными ландшафтами. Неглубокое залегание, сопровождающееся инфильтрацией, и ежегодное промывание паводками, говорит о том, что в пещеру постоянно попадают не только растворенные органические вещества, но целые фрагменты почвенных подстилок, а водотоки и паводки приносят живые организмы. То есть даже намытые паводковые глины содержат растворенную органику достаточную для поддержания микробных сообществ, сходных с сообществами минеральных горизонтов некоторых почв на поверхности. Что касается постоянного приноса высших организмов, то: в сифоне, соединяющем пещеры Китеж (Г-140) и Голубинский провал в зимнее время мы обнаруживали бокоплавов, характерных для большинства озер Беломорско-Кулойского плато, а в ручье пещеры Голубинский провал, опять же в зимнее время, были пойманы две лягушки.

Следующий фактор - гипсовая минерализация растворов. Было бы логично предположить, что она в первую очередь должна влиять на бактерий, так как клеточная мембрана при отсутствии ригидной клеточной стенки должна наиболее чувствительно реагировать на изменение осмотического давления. Однако, специальные эксперименты по выращиванию штаммов бактерий на среде с концентрацией сульфата близкой к предельному насыщению продемонстрировали, что гипс не оказывает существенного влияния на большинство компонентов микробного комплекса. Несколько снижается доля миксобактерий и скользящих бактерий, за счет которых увеличивается доля корне-подобных бактерий и актиномицет. При этом кардинальной перестройки сообщества не наблюдается. Позволим себе сделать предположение, что гипс ингибирует бактерий, образующих внеклеточную слизь, таких как миксобактерии и цитофаги.

Еще один возможный фактор, который, к сожалению, пока не поддается нашей оценке, - цикличность природных событий. Речь идет о многообразии циклов, происходящих на поверхности, таких как суточные, сезонные и годовые изменения. Безусловно, косвенным образом это отражается и на пещерах. Например, ежегодный весенний паводок играет роль "листопада" в пещерах, принося новые порции органического вещества, а зимой температура снижается на несколько градусов из-за того, что теплый воздух поднимается вверх, а холодный заходит через нижние входы. Однако, весьма вероятно, что непременным атрибутом функционирования наземных сообществ является ежегодное зимнее промерзание, во время которого реализуются фазы инициации следующего цикла живых организмов. Кроме того, не совсем ясно влияние проникающей солнечной радиации. Есть мнение, что это именно тот фактор, который влияет на синхронизацию многих далеких друг от друга биологических процессов. Очевидно, что в пещерах влияние солнечной активности сказывается в меньшей степени и преимущественно косвенным путем.

И, наконец, фактор, который мы признаем наиболее важным с точки зрения экологии пещерных местообитаний в районе Пинеги, - это температура. Все, без исключения, полученные нами данные говорят о том, что температура - лимитирующий фактор для биологических процессов в пещерах. Рассмотрим это на нескольких характерных примерах.

Пример первый - сульфатредуцирующие бактерии. Эти бактерии весьма распространены во всех озерах и болотах с гипсовой минерализацией. Доминирующим видом для Пинежского района мы считаем вид - Desulfotomaculum acetooxidans, выделенный из черных илов озера Ераськино и болот в районе пещеры Г-1. С того момента, как мы начали изучение пещерной микрофлоры, нам было не совсем понятно, почему в пещерных водоемах, где есть избыток сульфата и достаточное количество растворенной органики, необходимой для жизнедеятельности этих бактерий, бактериальной сульфатредукции не наблюдается. Однако посещение пещеры Пехоровский Провал в 1996 и 1997 годах позволило разрешить эту загадку. Следует отметить, что микроклимат ряда пещер Пинеги зависит от количества поступающей в них воды. По словам Е.В.Шавриной пещеры Пинеги - с "водяным отоплением". То есть во влажный год, когда под землю поступает большое количество теплой воды с поверхности, температура под землей на несколько градусов выше, чем в сухой год. Именно такую картину мы и наблюдали в пещере Пехоровский провал. Во влажном 1996 году температура воздуха в пещере колебалась между 7 и 10 0С, а температура воды была около 12 0С. Когда в июле мы спустились в пещеру, и прошли вдоль магистрального ручья, то почувствовали явственный запах сероводорода. Раскопав в нескольких местах глину на дне ручья, мы обнаружили характерные черные илы. Когда же мы посетили пещеру в более сухой 1997 год, то ни малейших следов сульфатредукции не обнаружили. При этом температура воздуха в пещере оказалось в районе 5-6 0С, а температура воды 6-7 0С. Впоследствии мы наблюдали за началом процессов сульфатредукции в начале мая в болоте на поверхности, и пришли к выводу о существовании лимитирующей температуры, ниже которой бактерии не развиваются. По "болотным" наблюдениям, она оказалась в районе 70С, но, по-видимому, эти данные несколько занижены.

Следующий пример связан с разрушением растительных остатков сообществами грибов. Мы поставили простейший эксперимент, заключающийся в том, что бумажные фильтры помещались в чашки с образцами почвенной подстилки, из наземной почвы и из пещеры. Чашки инкубировались при разных температурах, имитирующих "теплые - наземные" и "холодные - пещерные" условия. По мере разрушения бумажных фильтров делались посевы на питательные среды для определения доминирующих видов грибов. И что же оказалось: несмотря на то, что почвенные и пещерные образцы содержат примерно одинаковый видовой состав грибов, часть грибов сохраняют жизнеспособность, но не вегетируют в холодных условиях пещер. Если в "теплых" условиях на первых стадиях сукцессии доминируют грибы Aspergilus niger и Pinicillium hirsutum, то в "холодных" условиях предпочтение получают виды Penicillium expansum и Penicillium auranthiogriseum. То есть под влиянием температуры из равных исходных условий формируются сообщества с различными преобладающими организмами. Пожалуй, наиболее "пещерным" видом грибов по данным, имеющимся у нас на настоящий момент, можно считать вид Penicillium viridicatum, который растет при достаточно низких температурах и даже формирует на глине микроколонии, похожие на выцветы гипса. Если в предсифонной части пещеры Голубинский Провал приглядеться к мелким белым пятнышкам на паводковой глине или провести по ним пальцем, а потом понюхать, то станет понятно, что эти пятнышки не что иное как микроколонии грибов. Но опять же мы называет этот вид "пещерным" не потому, что он не встречается на поверхности, а потому, что его доля в пещерных местообитаниях существенно возрастает.

Однако, в качестве специфики пещерных биоценозов нами обраружена холодовая адаптация у некоторых бактерий (акваспириллы и артробактеры). Эксперименты продемонстрировали, что популяции бактерий, набравшие биомассу при более низких относительно контроля температурах, приобретают способность вегетировать в более холодных условиях. То есть нижний предел их температурного интервала сдвигается в область более низких температур. При этом "закаливание" штаммов (то есть помещение культур в холодные условия на некоторое время) не влияет на их температурный интервал.

Пещера Яхалом была обнаружена в мае 2006 года, в зоне, предназначенной под расширение меловых карьеров. По чистой случайности на неё обратил внимание геолог, исследовавший грунтовые воды. Ничем не примечательная дырка в склоне горы, показалась ему не глубже 8 метров. Он рассказал о ней Малхаму, организации занимающейся исследованием пещер на территории Израиля. Пещера оказалась сюрпризом по своим масштабам и фауне. На сегодняшний день в ней картографировано 2.5 километра меловых ходов, найдено подземное озеро и обнаружена редчайшая микрофлора и фауна.

У Яхалома, есть две скверные особенности:

Первая - стены пещеры как снегом, покрыты белой пудрой. Пудра образуется из-за постоянной повышенной влажности и работы бактерий. В начале, её даже хотели назвать “Снежной”. Эта славная пудра проникает везде, как только ты попадаешь в пещеру.

Вторая особенность - это огромная влажность. В сочетании они образуют на теле грязевую маску. Но об этом всём удаётся забыть, когда попадаешь в главный зал и видишь прозрачную гладь подземного озера. Когда мы вышли в центральный зал, там уже работало несколько биологов. Озеро оказалось обитаемым, и в нём были обнаружены редчайшие разновидности подземных раков. Сейчас их пытаются идентифицировать и понять, являются ли они совершенно новым видом, или, возможно, это одно из трех мест в мире, где была обнаружена подобная разновидность. Раки живут в полной изоляции от внешней среды. Кормом для них служат хемотрофные бактерии. Те, в свою очередь, живут благодаря химическому синтезу диоксида углерода. Бактерии образуют тонкие пластинки на поверхности воды. По этим пластинкам можно судить об уровне подземных вод в последние десятилетия. Чрезмерное использование грунтовых вод сильно понизило уровень воды в пещере. Чётко виден уровень богатого осадками 91 года, когда вода была на 6 метров выше сегодняшнего. Ещё одна интересная особенность озера - это его высокая температура, видимо, озеро подпитывается из горячего источника.

 Обследование состояния Каповой пещеры и ее рисунков. Поверхностный геоморфологический маршрут и осмотр пещеры "Ташкелят": сбор информации о периферической зоне спелеосистемы. Гидрологические исследования: выявление сдвигов в гидрологическом режиме с 1983 г. Определение содержания тяжелых металлов в воде Голубого грота Каповой Микробиологические исследования: рекогносцировочная оценка антропогенного микробиологического загрязнения пещеры.

Материал и методы. Анализ проб воды Голубого грота Каповой пещеры проводился в лаборатории ВСЕГЕИ на содержание кадмия, цинка, свинца, меди. Микробиологические исследования образцов грунта, древесных остатков, минеральных натеков и воды: обсемененность образцов сапрофитными гетеротрофными микроорганизмами, растущими на богатой питательной среде, микрофлорой, выявляемой в обедненной среде Горбенко и среде на основе экстрактов исследуемого субстрата. Определялась обсемененность бактериями, растущими на среде Эндо, применяемой для энтеробактерий. Для выявления плесневых грибов, дрожжей и актиномицетов использовались соответствующие селективные питательные среды.

Результаты. Проведен микробиологический анализ 6 образцов грунта, 2 - древесных остатков, 1 - минеральных натеков и 1 - воды. Выявлена обсемененность грунта сапрофитными гетеротрофами. Микрофлора, не выявляемая на традиционной питательной среде, специфическая, по-видимому, истинно аутохтонная. Энтеробактерии отсутствовали во всех образцах, кроме грунта из "Зала Рисунков", что свидетельствует об отсутствии заметного антропогенного загрязнения. В трех пробах обнаружены микромицеты, плесневые грибы. Дрожжеподобные грибы выделены из образцов древесных остатков из "Зала Хаоса". Микробиологический мониторинг спелеосистемы необходим в силу лабильности ее экологического равновесия, которое может быть нарушено в случае массового проникновения посторонней микрофлоры, биогенных элементов и других экологически активных антропогенных факторов.

1.3 Факторы уязвимости пещер

Особенностью пещер является длительное время их образования (от тысяч до миллионов лет); они имеют разное происхождение, неодинаковую морфологию и характеризуются относительно стабильным режимом климатических параметров, устойчивостью происходящих в них процессов. В тоже время многие компоненты пещер отличаются повышенной ранимостью, у них почти полностью отсутствует способность восстанавливаться после интенсивного антропогенного воздействия (нагрузок). К сожалению, пещеры, в силу своей таинственности, необычности и слабой изученности являются местом постоянного паломничества разных слоев населения (чаще молодёжи). Повышает интерес к пещерам и широкая реклама наиболее посещаемых экскурсионных пещер. Неуправляемый поток посетителей и "исследователей", не вооруженных знаниями об особенностях и ценности пещер, не владеющих методами их научного изучения, способен вызвать гораздо большие изменения климата пещер, строения её элементов, изменение состава флоры и фауны, чем значительные природные катаклизмы на поверхности земли (такие, например, как четвертичное оледенение). При нерегулируемом посещении это воздействие особенно усугубляется в связи с ограниченными объемами пещер, как правило, однозначными маршрутами движения групп, постоянными местами отдыха, навески снаряжения, разбивки подземных бивуаков, приготовления пищи, складирования отбросов, отправления естественных надобностей. Результатом таких посещений является неизбежное нарушение эстетического состояния пещер и подземных ландшафтов, скопления отбросов и нечистот, закопчённые стены и потолки, задымление галерей, скопление экологически вредных веществ из оставленных сухих электрических элементов, отработанного карбида кальция (используется для заправки ацетиленовых фонарей), продуктов сгорания топлива и нефтепродуктов, затаптывание и захватывание натечных и кристаллических образований, выламывание их, т.е. совокупное биологическое, вещественное, химическое, эстетическое и климатическое загрязнение полостей. Следует особо подчеркнуть, что микрофлора и бактерии в пещерах развиты незначительно (по сравнению с внешними условиями) и приспособлены к практически стабильному климатическому режиму в мало изменяющихся фоновых гидрологических и гидрохимических условиях. Вследствие этого они не способны быстро видоизменяться и приспосабливаться к резкому изменению условий, не в состоянии перерабатывать большое количество привнесенной извне органики и минеральных веществ (часто для них непривычных), не имеют развитых защитных функций и потому не могут очищать окружающую среду пещер при загрязнении воды и отложений и выживать при конкурирующем размножении на отбросах поверхностных видов микроорганизмов. В результате, они вымирают при энергичном размножении поверхностных микроорганизмов и грибов. Пещеры имеют относительно стабильный режим протекающих в них процессов и кажутся хорошо изолированными от внешних воздействий. Тем не менее они достаточно хорошо связаны с поверхностью посредством множества трещин, пронизывающих карстовый массив, и узких ходов и каналов, функции которых (проводники воды, воздуха, снега и др.) из-за меняющихся условий на поверхности (вырубка леса, распашка территории, выпас скота, откачка воды из скважин, строительство плотин на внешних водотоках, разработка карьеров и др.) могут нарушаться. Это неизбежно приводит к изменению ранее установившихся равновесных условий в пещерах. Изменяются условия протекания различных процессов, режим обводнённости полостей, климат, условия обитания фауны и флоры, роста минеральных агрегатов, заполнения пещер отложениями и т.д. Потому в общем случае охранная зона пещер должна включать не только входное отверстие полости, но также по меньшей мере всю ту территорию над пещерой, которая оконтуривается сглаженной охватывающей линией с учетом всех выступающих частей на плане пещеры (или группы пещер). При оконтуривании пещер с подземными водотоками необходимо в охраняемую часть включать области питания этих водотоков (что, к сожалению, далеко не всегда возможно). Охраняемая зона является индивидуальной для разных видов и типов пещер и разрабатывается специалистами для каждого конкретного случая.

Кроме высокой чувствительности к изменению внешней среды, а также легкой ранимости и уязвимости пещер при вмешательстве человека в их внутреннюю среду отмечается и слабая способность пещер к адаптации к человеческому влиянию. Оно выражается в незначительной емкости (способность объекта переносить воздействия не разрушаясь) по отношению к человеку многих элементов пещерного ландшафта. Это выражается и в слабой способности к восстановлению нарушенных пещерных и карстовых ландшафтов.

Любая деятельность человека, приложенная к пещерам непосредственно или опосредованно, всегда негативно сказывается на состоянии их внутренней среды (человек чуждый элемент в среде и экосистеме пещер). Сама геологическая среда пещер (порода) достаточно устойчива к человеческому присутствию и в большинстве случаев (при некоторых ограничениях) может эксплуатироваться в довольно широких пределах (в данном случае под эксплуатацией понимаются в основном широкомасштабные посещения). По иному обстоит дело с климатом, гидрологией и экосистемами пещер.

Экосистемы формировались в течение весьма продолжительного времени, причем все изменения в пещерах происходили постепенно и в очень смягченной форме, чему способствовала существенная изолированность внутренних частей пещер от внешнего мира. Это позволяло организмам, населяющим пещеры, приспосабливаться к внешним изменениям среды, либо менять среду обитания. Изменения, происходящие в настоящее время, с геологической точки зрения, происходят мгновенно и никакие организмы не в состоянии приспособиться к ним, тем более такие консервативные как пещерные.

Посещение пещер изменяет многие их климатические параметры. Это особенно заметно при низких фоновых температурах в полостях. Факел тепла, выделяемый каждым человеком, изменяет температуру и влажность воздуха в непосредственной близости