Скачать

Изучение и анализ производства медного купороса

Целью данного дипломного проекта является изучение и анализ производства медного купороса, основанного на переработке отработанного передаточного электролита цеха электролиза меди.

В ходе работы над дипломным проектом был сделан анализ работы аппарата растворения (оксидизера) для растворения гранулированной меди и получения насыщенных растворов сернокислой меди. В результате использования большого количества сжатого воздуха и пара для растворения меди в оксидизере, возникла необходимость внести изменения в технологическую схему, то есть произвести замену аппарата растворения на аппарат колонного типа с целью снижения выхода меди в зашламленные гранулы, снижение расхода энергоносителей.

На протяжении многих десятилетий целями ОАО «Уралэлектромедь» являются:

– быстрое получение прибыли;

– расширение доли предприятия на рынке;

– повышение качества и номенклатуры выпускаемой продукции;

– разработка и внедрение ресурсо- и энергосберегающих технологий      

производства.

Указанные направления в результате обеспечат экономическую устойчивость и конкурентоспособность продукции ОАО «Уралэлектромедь» на российском и мировом уровне.

В настоящее время ОАО «Уралэлектромедь» является лидером на рынке сбыта медного купороса.

Потребителями медного купороса являются: фирма VISTHON TRADING CORPORATION LTD, Бему; фирма TRISTAR Marketing Associates Limited, Нидерланды, Китай, Молдова, город Кишинев, Германия, Польша, Испания, Канада и другие.

Предлагаемый медный купорос имеет большой спрос на мировом рынке. Это продиктовано тем, что этот продукт является основным сырьем для получения искусственных волокон, органических красителей, минеральных красок, используется в качестве удобрения, как составная часть ядохимикатов.

Расположение предлагаемого производства в условиях ОАО «Уралэлектромедь» также дает ряд преимуществ:

Во-первых производство медного купороса основано на переработке отработан-ного электролита цеха электролиза меди и медных гранул, то есть источниками исходного сырья являются цеха, расположенные на территории данного предприятия, что, в свою очередь, приводит к снижению затрат на транспортировку, закуп сырья и т. д.

Во-вторых большой спрос на медный купорос объясняется отсутствием товаров заменителей, что делает предлагаемый продукт уникальным.

ОАО «Уралэлектромедь» придерживается следующей политики в отношениях с конкурентами: «Привлечь потребителя лучшим качеством и умеренной ценой» (1).


1. Обзор литературных источников

Основным сырьем для получения медного купороса служат серная кислота и медь: медный лом или отходы металлообрабатывающей промышленности – стружка, опилки и т. д., а также отходы или полупродукты металлургии меди – белый матт и окись меди, ватержакетная пыль, шлаковые отходы, электролитные растворы медеэлектролитных заводов, цементная медь, извлекаемая из рудничных вод, из колчеданных огарков и др.

Важным видом сырья для получения солей меди является ватержакетная пыль, представляющая собой тонкий порошок и содержащая 0,5 – 5 % Cu в форме сульфида и сульфата, 40 – 50 % Fe, 3 – 6 % Al2O3, 3 – 6 % Zn, до 15 % S,

7 – 10 % SiO2 и др. Перспективным видом сырья являются шлаковые отходы медеплавильных заводов, накапливаемые в течение многих лет в виде отбросов. Медь в этих отходах содержится в окисной, сульфидной и силикатной формах, а также в форме металла и ферритов. Примерный состав шлаковых отходов следующий:

2 – 7 % Cu, 5 – 7 % Fe2O3, 15 – 25 % Al2O3, 45 – 50 % SiO2, 1 – 5 % CaO, 5 – 10 % MgO, 1 – 3 % S и 1 – 2 % прочих примесей.

Большим резервом сырья для производства солей меди являются накапливаемые массы огарков от обжига колчедана на сернокислотных заводах. В старых огарках от обжигания рядового колчедана содержится до 1,5 % меди в виде CuSO4, CuSO3, CuO, Cu2S, CuS, CuFeS2. Необходимость извлечения соединений меди из огарков диктуется условиями их использования металлургической промышлен – ностью в качестве заменителя железной руды.

Указанные виды сырья в основном перерабатывают в медный купорос, который, помимо непосредственного употребления, служит также исходным материалом для получения всех других солей меди.

Способы производства медного купороса различают главным образом по видам применяемого сырья:

а) из медного лома и отходов меди (стружки, высечки, проволоки, опилок и т. п.) с окислением меди кислородом воздуха, электролизом или раствором хлорной меди;

б) из окиси меди, получаемой из белого матта;

в) из окиси меди и сернистого газа;

г) из окисленных медных руд, содержащих незначительное количество меди, переработка которых на металлическую медь плавкой в печах является неэкономичной;

д) из колчеданных огарков и других отходов;

е) из отбросных электролитных растворов медеэлектролитных заводов.

За рубежом основными производителями медного купороса являются Франция и Италия, где в качестве сырья используют главным образом медный лом и окисленные руды. В отличие от этого в США используют в основном электролитные щелоки, из которых производят больше половины всех солей и препаратов меди.

1.1 Производство медного купороса из медного лома

В отсутствие окислителей, в частности кислорода воздуха, в разбавленной серной кислоте медь практически не растворяется. Она с достаточной скоростью растворяется в горячей концентрированной серной кислоте, но осуществлять этот процесс не рационально, так как при этом половина затрачиваемой кислоты восстанавливается до SO2, окисляя медь в окись меди, которая и растворяется в серной кислоте, образуя медный купорос. Схема этого процесса может быть выражена следующими уравнениями реакций:


Cu + H2SO4 = CuO + H2O + SO2     (1)

         CuO + H2SO4 = CuSO4 + H2O                            (2)

Cu + 2 H2SO4 = CuSO4 + 2 H2O + SO2 (3)

С целью экономии серной кислоты окисление меди производят кислородом воздуха одновременно с процессом «натравки», то есть растворения в серной кислоте. Медный лом предварительно переплавляют для рафинирования (очистки от примесей Fe, Zn, Al, Pb и др.) и придания ему формы, удобной для растворения – пустотелых гранул, обладающих большой поверхностью, что ускоряет растворение в кислоте в 5 – 10 раз.

1.1.1 Очистка и грануляция медного лома

Чистая медь плавится при 10840С, а в присутствии примесей – при более низкой температуре. Примеси летучих металлов и окислов – металлический цинк, трехокиси мышьяка и сурьмы – удаляются при нагревании меди до ее расплавления. При расплавлении медь окисляется до закиси меди, устойчивой выше 11000. Закись меди накапливается на поверхности расплавленной меди в твердом (до 12000С) и в жидком (выше 12350С) виде и частично растворяется в меди, а затем вступает во взаимодействие с примесями, например:

Cu2O + Fe = FeO + 2 Cu         (4)

По мере расходования растворенной закиси меди новые ее количества переходят с поверхности в раствор, и медь подвергается дальнейшему окислению.

Образующиеся окислы железа, магния, кальция и других металлов не растворимы в меди и переходят в шлак, всплывающий на поверхность металла. Вследствие взаимодействия закиси меди с некоторыми окислами (например, с окисью железа с образованием феррита меди) часть ее также переходит в шлак и содержание в нем Cu2O достигает 30–40 %.

После окисления, ошлакования примесей металлов и удаления шлака температуру в печи немного снижают с целью окисления присутствующей в меди полусернистой меди:

Cu2S + 2 Cu2O↔ 6 Сu + SO2 (5)

Эта реакция протекает бурно, и выделяющаяся двуокись серы увлекает брызги меди с образованием «медного дождя» («кипение» массы).

В производстве медного купороса дальнейшая очистка меди не требуется, а присутствие в ней кислорода и двуокиси серы необходимо для получения пористых и пузыристых гранул. Растворимость газов в расплавленной меди возрастает с повышением температуры. В твердой меди, нагретой даже до температуры плавления, растворимость газов незначительная. Процесс гранулирования с получением пузыристой и пористой меди основан на быстром выделении газов при внезапном охлаждении и затвердевании расплавленной меди. Это осуществляется выливанием ее тонкой струей в холодную воду.

Серы, содержащейся в меди, обычно недостаточно для образования полных гранул. Поэтому в период «кипения» расплава в него добавляют некоторое количество полусернистой меди или комовой серы (1 – 1,5 %). Образующаяся при этом двуокись серы растворяется в меди, а при ее грануляции выделяется и раздувает капли меди в пустотелые шарики с тонкими стенками.

1.1.2 Растворение меди в серной кислоте (натравка)

При взаимодействии гранул меди с разбавленным раствором серной кислоты, содержащим также сульфат меди, в присутствии воздуха, кислород воздуха растворяется в кислоте, диффундирует к поверхности меди и окисляет ее до закиси меди:

4 Cu + O2 = 2 Cu2O               (6)

Закись меди растворяется в серной кислоте:

Cu2O + H2SO4 = Cu2SO4 + H2O (7)

Образующийся сульфат закиси меди легко окисляется в сульфат окиси меди:

2 Cu2SO4 + 2 Cu2SO4 + O2 = 4 CuSO4 + 2 (8)

Общая скорость процесса лимитируется наиболее медленной его стадией – окислением меди до закиси меди. Это объясняется малой растворимостью кислорода и медленной его диффузией к поверхности гранул меди. Процесс значительно ускоряется, когда в растворе уже присутствует медный купорос.

Повышение температуры, как и в других случаях, ускоряет химические реакции, но вызывает уменьшение растворимости кислорода, что замедляет окисление. Поэтому в натравочной башне поддерживают температуру не выше 80–850С. При этом на окисление меди используется приблизительно ¼ кислорода, поступающего в башню с воздухом, расход которого составляет около 1000 нм3 на 1 тонну медного купороса.

Растворимость кислорода уменьшается с ростом концентрации CuSO4 в растворе. Поэтому при повышении концентрации CuSO4 скорость растворения меди сначала увеличивается за счет каталитического действия CuSO4, а затем уменьшается вследствие недостатка кислорода. Максимум скорости растворения наблюдается при концентрации 120 г./л CuSO4 (для раствора, содержащего ~ 110 г./л H2SO4). Но даже при содержании в растворе 300 г./л CuSO4 скорость растворения меди в 1,6 раза больше, чем в отсутствие медного купороса. С увеличением концентрации серной кислоты растворимость кислорода в ней уменьшается, но усиливаются ее окислительные свойства. Поэтому повышение кислотности раствора вызывает не очень большое уменьшение скорости растворения меди – всего на 10 % при повышении концентрации H2SO4 с 2,5 до 20 %. Растворение меди значительно ускоряется в присутствии в растворе ионов железа вследствие деполяризации

4 Fe2+ + O2 + 4 H+ = 4 Fe3+ + 2 H2O (9)

2 Cu + 4Fe3+ = 2 Cu2+ + 4 Fe2+ (10)

Ионы Fe2+ вновь окисляются в Fe3+ и служат, таким образом, катализатором процесса. Доля растворяющейся меди под действием ионов Fe3+ в растворе, содержащем ~110 г./л H2SO4, 60 г./л CuSO4 и 20 – 22 г./л FeSO4, составляет около 60 % от всего количества меди, перешедшей в раствор.

Ионы железа попадают в циркулирующий при растворении меди раствор с серной кислотой и вследствие растворения оставшихся в меди примесей. Содержание сульфатов железа в растворе непрерывно возрастает и достигает иногда

70 г./л и более. Вследствие этого при кристаллизации медного купороса выделяется также и сульфат железа, загрязняющий продукт. Поэтому, когда концентрация железа в растворе становится столь большой, что создается опасность получения нестандартного по содержанию железа медного купороса, раствор полностью выводят из обращения.

Существенным является обеспечение равномерного орошения (смачивания) гранул меди раствором. В местах, плохо орошаемых кислотой, образовавшаяся окисная пленка растворяется не полностью, вследствие малой своей растворимости кристаллизуется из раствора и цементирует при этом гранулы и шлам.

1.1.3 Производство медного купороса из медного лома

Производство медного купороса из медного лома делится на три стадии:

1) получение гранулированной меди; 2) получение раствора сульфата меди;

3) кристаллизация и сушка медного купороса.

Получение гранулированной меди

Медный лом («тяжелую» медь) плавят в медеплавильной печи. Проволоку, стружку, высечку и т. п. («легкую» медь) перед подачей в печь брекетируют. Плавку лома ведут обычно в пламенных печах из огнеупорного шамотного кирпича, отапливаемых мазутом.

Плавка меди в печи продолжается, в зависимости от количества примесей, 4,5 – 6 часов. После удаления шлака в «кипящую» медь забрасывают серу, затем ее выпускают тонкой струей в воду, находящуюся в гранулировочном бассейне. Он представляет собой бетонированную яму, высотой 1,6 м и диаметром 2,5 м.

В бассейн помещают стальную корзину с дырчатыми стенками высотой 1 м и диаметром 1,6 м; в последней собираются гранулы. При подъеме корзины с гранулированной медью вода стекает через отверстия в стенках корзины. Образующиеся гранулы имеют диаметр 5 – 15 мм. Вес 1 л гранул не должен превышать

2 кг. 1 кг таких гранул имеет поверхность до 1500 см2.

Получение раствора сульфата меди

Гранулированную медь загружают в натравочную башню, высотой около 6 м, диаметром 2,5 м. Башня изготовлена из листовой стали, внутри футерована кислотоупорным кирпичом и диабазовыми плитками. На высоте 0,5 – 0,9 м от дна в башне имеется ложное днище, лежащее на колосниковой решетке из стальных балок, опаянных свинцом. На ложном днище находится слой меди, высоту которого поддерживают периодическими загрузками на уровне 0,25 м от крышки башни. Под крышкой помещена турбинка, с помощью которой медь непрерывно орошается смесью серной кислоты с маточным раствором. Количество находящейся в башне меди составляет 22 – 28 т.

В башне происходит одновременно окисление и растворение меди. Эти процессы идут с выделением тепла, достаточным для повышения температуры до необходимого уровня, то есть до 70 – 850С. Для окисления меди в башню под колосниковую решетку вдувают воздух в смеси с паром. Пар подают для нагревания воздуха. Вдувание холодного воздуха вызвало бы охлаждение щелока и выделение из него кристаллов медного купороса, что привело бы к закристаллизовыванию нижнего слоя гранулированной меди. Подачей пара регулируют и температуру в башне. Уходящая из нее паро-воздушная смесь выбрасывается в атмосферу. С 1 м3 натравочной башни можно получить в сутки более 1,3 т. медного купороса.

Орошающий щелок имеет температуру 55 – 600С и содержит 20 – 30 % CuSO4 ∙ 5 H2O, и 12 – 19 % свободной H2SO4. Оптимальная плотность орошения натравочной башни, равная 1,5 – 2,1 м3/(м2 ∙ ч), обеспечивает образование на поверхности медных гранул очень тонкой жидкостной пленки, через которую кислород диффундирует к меди с достаточной скоростью. При большей плотности орошения (4 – 5 м32 ∙ ч)) происходит снижение производительности башни, которое происходит после кратковременного ее возрастания, башня как бы «вымывается».

Вытекающий из натравочной башни горячий щелок (74 – 760С) представляет собой почти насыщенный раствор медного купороса – он содержит 42-49 % CuSO4 ∙ 5 H2O и 4 – 6 % свободной H2SO4. Этот щелок подают центробежным насосом из хромоникелевой стали во вращающийся кристаллизатор непрерывного действия с воздушным охлаждением раствора. Смесь кристаллов медного купороса с маточным раствором через сборник с мешалкой поступает в центрифугу из нержавеющей стали, где кристаллы, отжатые от маточного раствора, промываются водой. На центрифугирование поступает пульпа с соотношением Т: Ж от 1: 2 до 1: 1,5. Отфугованный продукт, содержащий 4 – 6 % влаги и 0,15 – 0,2 % кислоты, высушивают в барабанной сушилке воздухом при 90–1000С. Маточный раствор и промывную воду после смешения с серной кислотой возвращают в производственный цикл.

В маточном растворе происходит постепенное накопление примесей, все больше загрязняющих продукт. Содержащийся в медном купоросе сульфат никеля можно удалить с достаточной полнотой при однократной перекристаллизации. Для удаления FeSO4 необходима многократная перекристаллизация. Получение медного купороса с содержанием 99,9 % CuSO4 ∙ 5 H2O однократной перекристаллизацией из раствора, насыщенного при 700С, возможно при содержании в нем не более 0,3 % NiSO4 и не более 0,15 % FeSO4.

Если в растворе больше 40 г./л FeSO4, то количество железа в продукте больше 0,4 %, то есть выше нормы, допускаемой ГОСТом для продукта III сорта. Из растворов, содержащих больше 100 – 120 г./л FeSO4, выделяются смешанные кристаллы железного и медного купоросов с характерной сине-зеленой окраской.

Содержание железа в кристаллах медного купороса можно уменьшить предварительным окислением Fe2+ в Fe3+. Окислителем может служить воздух (длительный барботаж), азотная кислота, перекись водорода и др. Степень очистки повышается в 2 – 4 раза при добавке к раствору незначительного количества HF (плавиковой кислоты), что приводит к образованию фторидных комплексов Fe3+. Установлено также, что при усилении перемешивания в процессе кристаллизации получаются кристаллы с меньшим содержанием железа, но и размеры их уменьшаются. Присутствие ионов никеля также уменьшает размеры кристаллов, а мышьяка – увеличивает.

На производство 1 т. кристаллического медного купороса расходуют: 0,27 – 0,29 т. металлической меди и 0,39 – 0,40 т. серной кислоты (100 %).

На заводе имени Войкова общие затраты тепла на производство медного купороса составляли 0,76 мгкал на 1 т. продукта. Расход тепла распределяется следующим образом. В натравочную башню через инжекторы вводится 47 % тепла, на подогрев воздуха в калориферах сушильного агрегата затрачивается 26 % тепла и 27 % тепла расходуется на подогрев раствора в сборниках, на разогрев мазута в цистернах и т. д. Количество тепла, выводимого с паро-воздушной смесью, больше тепла, вводимого с паром вследствие дополнительного парообразования, обусловленного выделением тепла реакцией. Поэтому вместо паро-воздушной смеси можно вдувать в башню теплый воздух из кристаллизатора с добавкой 20 – 25 % пара от обычного количества, при температуре смеси, исключающей закристаллизовывание нижнего слоя гранул в башне.

Ввод пара в натравочную башню может быть и вовсе исключен при осуществлении процесса с рециркуляцией паро-воздушной смеси. Отходящую из башни паро-воздушную смесь с температурой ~ 800С направляют при помощи вентилятора из нержавеющей стали под ложное дно башни. При осуществлении процесса по такой схеме возможно введение в цикл газообразного кислорода, что значительно интенсифицирует растворение меди.

Отходом производства медного купороса являются илы, скапливающиеся в резервуарах с производственными растворами. Количество илов составляет 1 – 2 % от перерабатываемой меди. Состав их различен; они могут содержать до 8,5 % Ag2O, до 5 % Bi2O3, 0,05 – 0,1 % Au, Pt, Pd. Такие илы могут быть переработаны гидрометаллургическими методами для извлечения из них ценных металлов.

Предложено получать медный купорос из натравочного щелока добавкой к нему серной кислоты (башенной, купоросного масла, олеума или SO3) до содержания свободной H2SO4 60 % и более. При этом быстро осаждается мелкокристаллический белый безводный сульфат меди, примеси же остаются в растворе. CuSO4 отфуговывают и растворяют в чистом маточном растворе медного купороса, из которого кристаллизуется CuSO4 ∙ 5 H2O. Кислый щелок после осаждения безводного CuSO4 возвращается на растворение меди. После накопления в нем значительного количества ценных примесей (никель, цинк, серебро и др.) их можно извлечь. Преимущество этого способа – в простой и быстрой кристаллизации медного купороса без затраты тепла и холода и высокой чистоте продукта.

Можно вообще отказаться от выпуска пятиводного сульфата меди и выпускать безводный продукт, концентрация меди в котором больше (39,8 % вместо 25,5 % в CuSO4 ∙ 5 H2O). Производство и транспорт его будут дешевле, хотя он и потребует более тщательной упаковки из-за гигроскопичности. Впрочем, даже при небрежной упаковке на поверхности белого порошка появится лишь синеватая окраска вследствие гидратации влагой воздуха, но это не ухудшит качества продукта, который предназначен для растворения в воде. Однако, во избежание слеживания, упаковка должна быть герметичной.

Очистка сточных вод, сбрасываемых в водоемы из производств медного купороса и других медных солей, от ионов меди может быть осуществлена на 70 – 90 % с помощью сульфата алюминия. Выделяющаяся при гидролизе сульфата алюминия гидроокись алюминия адсорбирует ионы меди.

1.2 Получение медного купороса электролизом

При проведении электролиза с растворимым медным анодом в растворе любой соли щелочного металла получающаяся на аноде медная соль, реагируя с образующейся на катоде щелочью, дает гидроокись меди с одновременной регенерацией электролита.

Можно получать электролизом и непосредственно раствор медного купороса, осуществляя процесс в ванне, в которой анод, находящийся на дне ванны, состоит из спрессованных или сплавленных обрезков меди. Через полый катод, помещенный сверху, подается серная кислота. Движением раствора от катода к аноду не допускается нежелательное в данном случае осаждение меди на катоде.

При проведении электролиза с растворимым медным анодом в растворе сульфата натрия в ванне с диафрагмой можно одновременно получать медный купорос и едкий натр. Особый интерес это может представить при применении ртутного катода с получением из образовавшейся амальгамы натрия концентрированной щелочи. Анодная жидкость, кроме медного купороса, будет содержать сульфат натрия, однако медный купорос и сульфат натрия могут быть легко отделены друг от друга (как известно, трудность разделения серной кислоты и сульфата натрия является одним из сложных вопросов в проблеме электролиза сульфата натрия). Таким образом, этот способ позволяет получать щелочь и медный купорос без затраты кислоты.

1.3 Получение медного купороса при окислении меди хлорной медью

Этот метод основан на образовании хлористой меди из хлорной и металлической меди:

Cu + CuCl2 = 2 CuCl (11)

(Хлористую медь получают также хлорированием цементной меди в растворе поваренной соли). Хлористую медь окисляют воздухом с образованием оксихлорида меди:


6 CuCl +1,5 O2 + 3 H2O = 3 (Cu(OH)2 ∙ CuCl2) (12)

Оксихлорид растворяют в серной кислоте, в результате чего образуется раствор сульфата меди и регенерируется хлорная медь:

3 (Cu(OH)2 ∙ CuCl2) + 3 H2SO4 = 3 CuSO4 + 3 CuCl2 + 6 H2O (13)

Получение оксихлорида меди осуществляют в бетонном баке, куда загружают медь и заливают раствор хлорной меди. После этого продувают массу воздухом, пока вся металлическая медь не перейдет в нерастворимый оксихлорид. После отстаивания и декантации пульпу растворяют при нагревании в серной кислоте. Приточный раствор возвращают в процесс.

1.4 Производство медного купороса из окиси меди

До распространения способа получения медного купороса из медного лома в натравочных башнях медный лом предварительно окисляли в печах в окись меди, которую затем перерабатывали в медный купорос.

В настоящее время медный лом перерабатывают в медный купорос только методом «натравки», а производство медного купороса растворением окиси меди в серной кислоте базируется на окиси меди, получаемой из полупродуктов и отходов медеплавильных заводов.

1.4.1 Получение окиси меди из белого матта

Белый матт образуется при извлечении меди из сульфидных руд в результате дальнейшей переработки штейна, состоящего из сульфидов меди и железа и получающегося после первой плавки сырья с отделением пустой породы. При добавке к штейну кварца и продувке воздухом сульфид железа окисляется и переходит в силикат. После удаления шлака остается полусернистая медь, имеющая в изломе серебристый белый цвет, поэтому ее называют белым металлом или белым маттом.

Белый матт получается в виде плит толщиной 6 – 8 см. Он содержит, кроме Cu2S, до 10 % металлической меди и 0,5 – 3 % железа; общее содержание меди 75 – 78 %. Он служит для получения черновой, а затем рафинированной меди.

Для переработки на медный купорос белый матт измельчают и подвергают обжигу в печах, с целью окисления сульфида в окись меди. Для обжига используют печи разных конструкций. Разрез одной из них показан на рис. 1. Печь имеет четыре пода, из которых два неподвижны, а два, находящиеся между ними, вращаются вокруг предполагаемой вертикальной оси, совпадающей с осью печи. Все металлические части печи вынесены наружу. Подвижные поды 2 опираются на ролики и опоясаны зубчатыми кольцами, с помощью которых приводятся во вращение. Поды выложены в форме пологих сводов из кислотоупорного кирпича. В каждый свод при кладке печи вставляются гребки 3, расположенные таким образом, что при вращении подвижных подов материал перемещается по сводам от периферии к центру или в обратном направлении и пересыпается со свода на свод.

Разогрев печи производится топочным или генераторным газом, поступающим под нижний свод печи. Наиболее распространены печи с диаметром 4,5 м. Производительность печи составляет 6 – 7 т обожженного матта в сутки при продолжительности пребывания материала в печи 10 – 12 ч. Обжиг белого матта ведут с добавкой 1,75 – 2 % угля, обеспечивающего снижение температуры воспламенения сульфида меди, что ускоряет его окисление. Для предотвращения спекания в шихту добавляют до 15 % измельченного «нагара». (Нагар – комочки спекшегося, плохо обожженного белого матта, отделяемые при просеивании обожженного матта). Температурный режим в печи устанавливается за счет тепла, выделяющегося при горении белого матта и угля. Обычно температуру поддерживают в следующих пределах: 670 – 7000С на первом поде (сверху), 740 – 7600С на втором, 650 – 6750С на третьем и 450 – 4750С на четвертом.

При обжиге белый матт превращается в окись меди по реакции:

Cu2S + 2 O2 = 2 СuO + SO2 (14)

Небольшая доля сернистого газа, в связи с присутствием в белом матте железа, каталитически окисляется до SO3, который сульфатизирует окись меди. Поэтому в продукте обжига белого матта, помимо основного компонента – окиси меди, а также остатков сульфида, содержится некоторое количество CuSO4. С учетом этого общая реакция окисления белого матта может быть записана так:

2 Cu2S + 4,5 O2 = 2 СuO + SO2 + СuO ∙ CuSO4 (15)

При недостатке кислорода или при плохом перемешивании может образоваться некоторое количество закиси меди:

2 Cu2S + 3 O2 = 2 Cu2O + SO2 (16)

Закись меди растворяется в серной кислоте хуже, чем окись, поэтому наличие ее в обожженном матте (огарке) нежелательно. Обожженный продукт содержит 87 – 90 % СuO и 8 – 10 % Cu2S или 70 – 72 % Cu и 2 – 2,5 % S. В нем несколько меньше меди, чем в исходном белом матте, что объясняется загрязнением продукта нагаром и золой угля. Основная масса серы уходит из обжиговой печи в виде сернистого газа, содержащего 1,5 – 2 % SO2, 0,5 – 1 % CO2, 15 – 17 % О2, имеющего температуру 250 – 3000С.

Растворение окиси меди в серной кислоте

Продукт обжига белого матта, огарок – окись меди – просеивают для отделения спекшихся комочков – «нагара» и продают в варочный чан для растворения в серной кислоте рис. 2. Отсеянный «нагар» после измельчения возвращают в печь, добавляя его к идущему на обжиг белому матту. Варочный чан изготавливают из андезитовых плит с внутренней свинцовой футеровкой. Используют также чаны из нержавеющей стали, выложенные кислотоупорным кирпичом и футерованные внутри листовым свинцом толщиной 5 мм.

Вначале в чан загружают маточный раствор, содержащий 28 % сульфата меди, а затем серную кислоту до получения раствора с концентрацией 15 – 20 % H2SO4. Массу подогревают до кипения острым паром, подаваемым через опущенные в раствор свинцовые трубы. В кипящий раствор загружают огарок небольшими порциями в течение 30 – 40 минут при перемешивании массы острым паром. Растворение ведут до образования раствора, содержащего 43 % CuSO4 и 3-4 % H2SO4.

Окись меди легко растворяется в серной кислоте. Содержащиеся в огарке металлическая медь и неокислившийся белый матт (Cu2S) практически не растворяются в серной кислоте и образуют нерастворимый шлам. В шлам частично переходит и плохо растворяющаяся в серной кислоте закись меди. По окончании варки отстоявшийся раствор направляют на кристаллизацию. В зависимости от качества обжига белого матта очистку реакционного чана от шлама производят или после каждой варки, или после 3 – 4 варок. В сухом веществе шлама содержится ~ 50 % меди, а также некоторые количества золота и серебра, зависящие от содержания их в исходной руде. Этот шлам возвращают для переработки на медеплавильные заводы.

1.4.2 Получение медного купороса из окиси меди и сернистого газа

Этот способ производства медного купороса является весьма экономичным. Однако применение его целесообразно главным образом в районах расположения медеплавильных заводов, где имеется соответствующее сырье – окись меди и отбросный сернистый газ.

В связи с этим особый интерес приобретает получение медного купороса из белого матта. При окислительном обжиге белый матт превращается в окись меди. Выделяющийся при этом сернистый газ рационально использовать для превраще-ния полученной окиси меди в медный купорос. Недостающее количество SO2 может быть пополнено за счет сернистых газов медеплавильных печей. Таким образом, белый матт может быть переработан на медный купорос без затраты серной кислоты и с полным использованием его компонентов – меди и серы.

Способ производства медного купороса из окиси меди и сернистого газа основан на взаимодействии при 85 – 950 суспензии окиси меди в водном растворе медного купороса со слабым сернистым газом, содержащим SO2 и кислород.

Отбросный сернистый газ, в случае необходимости, должен разбавляться воздухом. Это ускоряет процесс, так как концентрация SO2 в газе не имеет существенного значения, а увеличение содержания кислорода ускоряет реакцию.

Образование медного купороса происходит в результате двух независимо идущих процессов. Первый из них заключается в том, что сернистый газ в присутствии каталитически действующих ионов меди окисляется кислородом в серную кислоту:

2 SO2 + O2 + 2 H2O = 2 H2S (17)

Образовавшаяся кислота растворяет окись меди, причем получается медный купорос:

H2SO4 + СuO = CuSO4 + H2O (18)

Второй, параллельно идущий процесс заключается в частичном восстановлении сернистым газом двухвалентной (окисной) меди в одновалентную (закисную) с образованием плохо растворимой в воде соли Шевреля – комплексной окисно-закисной соли сернистой кислоты Сu(CuSO3)2 ∙ 2 H2O или CuSO3 ∙ Cu23 ∙ 2 H2O:

3 CuSO4 + 3 H2SO3 + 3 H2O = CuSO3 ∙ Cu23 ∙ 2 H2O + 4 H2SO4 (19)

Эта соль в отсутствие кислорода при кипячении суспензии разлагается с выделением закиси меди:

3 (CuSO3 ∙ Cu23 ∙ 2 H2O) = CuSO4 + 2 Cu2О + 5 SO2 (20)

Однако под действием сернистого газа и кислорода в результате дальнейшего образования серной кислоты закись меди снова переходит в раствор, и осадок соли Шевреля постепенно исчезает из суспензии, также превращаясь в медный купорос:

CuSO3 ∙ Cu23 ∙ 2 H2O + SO2 + 2 O2 = 3 CuSO4 + 2 H2O (21)

Окисление соли Шевреля при действии SO2 и O2 протекает с образованием вначале основного сульфата меди:

2 (CuSO3 ∙ Cu23 ∙ 2 H2O) + 3 O2 = Cu(OH)2 ∙ Cu SO4 + 3 CuSO4 + 2 H2O (22)

Эта реакция идет с большей скоростью, чем образование серной кислоты под каталитическим влиянием ионов меди. По мере накопления H2SO4 основной сульфат меди переходит в раствор:

2 Cu(OH)2 ∙ Cu SO4 + 2 H2SO4 = 3 CuSO4 + 4 H2O (23)


В результате этих процессов из суспензии исчезают все твердые фазы – и СuO и CuSO3 ∙ Cu23 ∙ 2 H2O и 2 Cu(OH)2 ∙ Cu SO4 – и суспензия превращается в раствор медного купороса. Таким образом, в общем процессы сводятся к окислению четырехвалентной серы (SO2) в шестивалентную и могут быть выражены суммар-ным уравнением:

2 СuO + 2 SO2 + O2 = 2 Cu SO4 (24)

Растворимость соли Шевреля возрастает с повышением температуры и содержанием в растворе CuSO4. При 200С растворимость этой соли в воде равна 0,042 %, а при 60 – 0,14 %. В 30 % растворе CuSO4 ∙ 5H2O при 200С растворимость повышается до 0,1 %, а при 600С – до 0,379 %. Поэтому, будучи суспензирована в растворе медного купороса, комплексная соль окисляется быстрее, чем в водной суспензии. Следовательно, для приготовления исходной суспензии окиси меди целесообразно брать не воду, а раствор медного купороса.

Скорость окисления соли Шевреля возрастает с уменьшением концентрации SO2 в газе. Последнее объясняется, вероятно, тем, что в газовых смесях с высоким содержанием SO2 количество кислорода недостаточно для окисления. При содержании в газе 1 – 4 % SO2 и температуре 950С соль Шевреля окисляется полностью за 15 – 20 минут. Однако длительность процесса увеличивается за счет времени, необходимого для предварительного растворения окиси меди и образования соли Шевреля. При 950С и достаточном содержании кислорода в газе (при объемном отношении O2: SO2 > 4) степень использования меди за 1 час составляет 94 – 97 %, а за 1,5 ч больше 99 %.

Технологическая схема производства медного купороса этим способом весьма проста. Окись меди суспендируют в маточном растворе, оставшемся после кристаллизации медного купороса, суспензию нагревают до 85 – 950 и насыщают отбросным сернистым газом, разбавленным воздухом. Из полученного раствора при охлаждении до 200С кристаллизуется медный купорос. Кристаллы отжимают на центрифуге, и маточный раствор возвращают в процесс.

1.4.3 Получение медного купороса сульфатизирующим обжигом белого матта

Существенным недостатком способа получения медного купороса из белого матта путем его окислительного обжига и последующего растворения полученной окиси меди в серной кислоте является то, что основное количество серы, содержащейся в белом матте, не используется. Между тем за счет этой серы теоретически возможно было бы перевести в медный купорос 50 % меди, находящейся в белом матте, и тем самым снизить в 2 раза расход серной кислоты при последующей обработке продукта обжига. С этой целью белый матт должен подвергаться не простому окислительному, а сульфатизирующему обжигу, то есть длительной прокалке при сравнительно невысоких температурах (400 – 5000С) при достаточном избытке кислорода. В этих условиях реакции:

2 SO2 + O2 ↔ 2 (25)

СuO + SO3 ↔ CuSO4 (26)

смещены направо и 60 – 70 % сульфидной серы переходят в сульфатную, что соответствует превращению 30 – 35 % меди в сульфат меди. Для обработки продукта обжига расходуется в 1,5 раза меньше серной кислоты, чем при простом окислительном (не сульфатирующем) обжиге, а общее использование меди достигает 90 %.

Механизм образования сульфата меди при сульфатирующем окислении белого матта можно представить следующими элементарными реакциями. Часть сульфида непосредственно окисляется в сульфат:


Cu2S + 2,5 O2 = CuSO4 + СuO (27)

Наряду с этим происходит окисление сульфида меди с образованием дв