Скачать

Элементы квантовой механики

В настоящее время развитие вычислительной техники проходит, в основном, в двух направлениях:

1. развитие и усовершенствование схематических решений средств ВТ

2. усовершенствование архитектурных решений ВТ

Одним из основных показателей качества средств ВТ является производительность (быстродействие) вычислительной системы. Необходимо отметить, что основной резерв повышения производительности в настоящее время следует искать в развитии второго направления, однако, это нисколько не означает, что первое направление, как утверждают некоторые авторы, себя исчерпало.

Развитие компьютерной электроники неразрывно связано (определяется) с достижениями в области микроэлектроники. Основными элементами ЭВМ являются разнообразные интегральные схемы (ИС), представляющие собой набор электрически связанных между собой активных (полупроводниковые структуры) и пассивных (резисторы, конденсаторы) компонентов, которые выполняют определённые функции.

Основным компонентом ИС являются полупроводниковые приборы, параметры которых в основном определяют параметры ИС и, следовательно, при одинаковых архитектурных решениях ЭВМ и её параметры (в том числе и производительность).

Физические процессы, протекающие в полупроводниковых приборах невозможно объяснить не прибегая к основным положениям квантовой механики и физики твёрдого тела. Из курса физики известна двойственная природа света (волновая и корпускулярная).

В 1924г. физик де-Бройль высказал гипотезу, которая затем была подтверждена экспериментально, согласно которой такими же свойствами должны обладать и микрочастицы (электроны, протоны, атомы и т.д.). Соотношение де-Бройля:

hn=E

l=h/mJ, где

-34

h – постоянная Планка; = 0,6*10 Дж ×с

E – энергия частицы

n - частота излучения

m – масса частицы

J - скорость частицы

Так как микрочастицы (в частности электроны) обладают свойствами корпускулы и волны, то описывать их движение методом классической механики невозможно. Уравнение, описывающее их движение, было найдено Шредингером и носит его имя:

2 2 2 2 2 2 2

dy/ dt =ђ/2m( dy/dx + dy/dy +dy/dz ) – U(x,y,z,y) где

ђ = h/2

y(x,y,z,t) – так называемая волновая функция – решение уравнения

U – потенциальная энергия частицы

В общем случае решение уравнения Шредингера встречает затруднения. Для практических задач уравнение часто существенно упрощается (например, y не является функцией времени; для других задач достаточно рассматривать движение только по одной координате и т.д.).

Решая приведённое уравнение с различными ограничениями (частные случаи), можно получить фундаментальные положения, объясняющие многие процессы в твёрдом теле (физика твёрдого тела). Например, таким образом, удалось объяснить явление туннельного эффекта – преодоление частицей, имеющей энергию E потенциального барьера высотой U и конечной толщины d, даже тогда, когда U>E. Причём, легко доказывается, что при этом микрочастица, просочившаяся (туннелируемая) через барьер, сохраняет свою прежнюю энергию Е.

Как мы увидим позже, явление туннельного эффекта довольно широко используется в схемотехнике ЭВМ.

ПОЛУПРОВОДНИКИ.

В природе все вещества обладают способностью в той или иной степени проводить электрический ток. Это свойство характеризуется значением идеальной проводимости s.

-10 -9 -4 -3

0 10 10 10 10

Элементы квантовой механики


Идеальный Диэлект- Полупроводники Полупроводники = ¥

Элементы квантовой механикидиэлектрик рик Идеальный

Элементы квантовой механики проводник

Такое деление весьма условное, особенно между ПП и диэлектриками (принципиальных различий нет). Что касается различий между металлами и полупроводниками, то различия здесь более принципиальные.

В настоящее время, наиболее широкое применение в интегральной технологии получил ПП – кремний. Поэтому, в дальнейшем, все примеры, кроме особо оговоренных, основаны на свойствах кремния.

Подавляющее большинство полупроводников (за исключением т.н. аморфных ПП) имеют ярко выраженную кристаллическую структуру и представляют собой в основном монокристаллы. Так простейшая кристаллическая решётка Si – куб. В вершинах куба (для тетраэдра и в центрах граней) находятся атомы Si. Известно, что Si – 4-х валентный т.е. 4 электрона внешней оболочки отсутствуют. Такой уровень является энергетически неустойчивым и атом Si пытается захватить 4 недостающие е с рядом находящихся аналогичных атомов, в свою очередь заимствуя им свои внешние е. При этом возникают специфичные обменные силы, обусловленные по парным объединением валентных е соседних атомов. Такая связь называется ковалентной (или просто валентной).

Овал: SiОвал: -- --Овал: -- --Овал: --Овал: SiОвал: Si

-- --

Овал: -- --Овал: -- -- Овал: --Овал: --Овал: Si

Овал: SiОвал: -- --Овал: SiОвал: -- --Овал: Si+

Овал: -- -- --

Элементы квантовой механикиЭлементы квантовой механикиОвал: -- --

Овал: Si а)

Элементы квантовой механики b) -- --

Т.к. структура кристалла регулярна, то это приводит к анизотропии - зависимости свойств от направления. Ориентация кристалла задаётся с помощью кристаллографических осей и перпендикулярных им кристаллографических плоскостей. Эти оси и плоскости обозначаются трёхзначными индексами Миллера ( оси (), плоскости () ).

Элементы квантовой механики Z (110)

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики 3| 2 (101)

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики 4 1 (100)

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики (111)

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

8 Элементы квантовой механики 7 X (100)

5 Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики6 (111)

Y a) b) c)

Каждой кристаллографической плоскости соответствует различная плотность _________ атомов, поэтому и различие в свойствах.

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

1,4 2,3 4 3 2 4 1,3 2

Элементы квантовой механикиЭлементы квантовой механики 1,8

Элементы квантовой механикиЭлементы квантовой механики 5,6 7,8 5 7 5 6,8 7

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики 6

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

а) b) c)

НОСИТЕЛИ ЗАРЯДА В ПП.

Электропроводность вещества объясняется наличием свободных носителей заряда, которые могут перемещаться в объёме вещества, либо под воздействием поля, либо при наличии градиента их концентрации в веществе (стремление к выравниванию концентрации).

Как же образуются свободные носители заряда в ПП?

Идеальный ПП при Т = абсолютному нулю (ПП не имеет дефектов кристалла, поэтому валентные е всех атомов участвуют в ковалентных связях, т.е. они не свободные) является идеальным диэлектриком. При повышении Т°(*) электроны приобретают дополнительную энергию и в конечном итоге некоторые ковалентные связи разрываются, образуя свободные е и незаполненную связь – «дырку» вблизи атома с недостающим е (образуется электронная дырочная пара). Такой процесс называется термогенерацией. Отсутствие е недолговечно (время жизни), на его место приходит е из соседних атомов (рекомбинация), т.е. «дырка» дрейфует. Такая проводимость ПП называется собственной проводимостью, а ПП – собственным ПП (особенность – количество е всегда равно количеству «дыр»).

Интересные явления наблюдаются при замещении некоторых атомов Si так называемыми примесными (примесь замещения, есть ещё и примесь внедрения) атомами другой валентности (3 и 5) (копр. 5 вал. Р или 3 вал. бор, Аl).

Элементы квантовой механикиЭлементы квантовой механики


Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

Элементы квантовой механики
Элементы квантовой механики
Элементы квантовой механикиЭлементы квантовой механики
Элементы квантовой механики


Овал: Ион --Овал: Ион +

Элементы квантовой механики
Овал: Si


a) b)

В первом случае 9 е атома фосфора легко «отрывается» от него образуя ион +, а е добавляется к собственным свободным е и равновесие – «дырка» нарушается. Проводимость становится преимущественно е – нной (n – проводимость).

Во втором случае все 3 е бора связаны с соседними атомами Si, образуя «дырку», а атом примеси превращается в неподвижный ион -. ПП приобретает дырочную (Р) проводимость. Такие проводимости называются примесными проводимостями. Носители, находящиеся в большинстве, называются основными, другого типа не основными.

ПАРАМЕТРЫ ПОЛУПРОВОДНИКОВ

е отдельно взятого атома зависит от того, на какой оболочке он находятся, имеют строго одиночное значение энергии. Под влиянием межатомных сил в кристалле эти энергетические уровни расширяются и превращаются в энергетическую зону (Эффект Штарка). Нас будет интересовать энергетическая зона внешней оболочки (т.н. валентная зона). Для того, чтобы е покинул валентную зону и стал свободным, обеспечивающим проводимость, ему необходимо сообщить определённую дополнительную энергию, после чего он попадает в так называемую зону проводимости.

Величина дополнительного энергетического импульса различна для различных полупроводников и определяет ширину так называемой запрещённой зоны. Собственно, ширина запрещённой зоны, а, следовательно, и вид зонной диаграммы, и отличает ПП от диэлектрика.

Элементы квантовой механикиЭлементы квантовой механики W(энергия)

j Зона проводимости

Элементы квантовой механики


Элементы квантовой механикиЗона проводимости

Элементы квантовой механикиЭлементы квантовой механикидонорная(n)

примесь Запрещённая зона

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЗапрещённая зона {

акцент.(р)

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики Валентная зона примесь Валентная зона

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

Элементы квантовой механикиЭлементы квантовой механики
Элементы квантовой механики


ПП Диэлектрик

Таким образом, ширина запрещённой зоны определяет энергию, необходимую для перехода е из валентной зоны в зону проводимости, и является важнейшим параметром ПП. Если е возвращается в валентную зону, то происходит рекомбинация е и дырки.

В электронике оценка энергии е производится величиной

W = gj, где

j - потенциалов, прошедших элементарным зарядом (иногда, энергетическим потенциалом).

В зависимости от количества атомов примеси и от энергии, получаемой е внешних оболочек (в частности от Т° ПП) количество е зоны проводимости будет различно. Но ведь количество носителей тока при наличии поля будет определять, в частности, величину тока в ПП. Поэтому количество таких е («дырок») является важным параметром. Однако, само количество е («дырок») ещё ни о чём не говорит. Важна их концентрация (т.е. количество на единицу объёма).

Концентрация носителей (обозначается n – для е и p – для «дырок») – очень важный параметр ПП. Концентрация сильно зависит от Т° (например, увеличение Т на 5% увеличивает концентрацию на ~ 3 раза) и от ширины запрещённой зоны (обратно пропорционально). В ПП концентрация носителей неравномерна ( т.е. существует градиент концентрации). Такое неравномерное распределение носителей называется Больумановским равновесием и объясняется возникновением внутреннего электрического поля в ПП, препятствующего выравниванию концентрации.

Движение носителей в электрическом поле напряжённостью Е называется дрейфом и величина дрейфового тока:

i = E, где

- удельная проводимость, важный параметр ПП (иногда используют удельное электросопротивление r = 1/).

Т.к. в ПП есть 2 типа носителей, то

s = qnmn + qpmp,где

q – единичный заряд

n и p – концентрация

mn и mp – подвижность носителей, важный параметр ПП.

В вакууме носитель под воздействием поля Е будет двигаться равноускоренно. Другое дело – твёрдое тело. Ускоряясь, носители постоянно «сталкиваются» с атомами (испытывают рассеяние). На длине свободного пробега носители двигаются равноускоренно, затем, столкнувшись, теряют скорость и снова ускоряются. Поэтому средняя дрейфовая скорость _

J = mЕ, где

m - коэффициент пропорциональности, называемый подвижностью носителя, и зависящий от его эффективной массы (для Si me ~ 3mp).

Быстродействие полупроводниковых приборов прямо пропорционально подвижности носителей ПП, на основе которого выполнен прибор.

Подвижность – величина не постоянная и зависит от Т°, причём неоднозначно, например

Элементы квантовой механикиЭлементы квантовой механикиm Так, для Si m могут меняться в диапазоне рабочих температур

Элементы квантовой механики от -50°С до +125°С в 4-5 раз.

Т

ЭФФЕКТ ПОЛЯ

Эффект поля – это изменение концентрации носителей (а, следовательно, проводимости) в приповерхностном слое ПП под воздействием внешнего электрического поля.

Создадим конструкцию МДП:

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиДвойные круглые скобки: P ППЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

+ d++ +++
· · Т.к. есть диэлектрик, то ток не течёт. Из-за свойств

Элементы квантовой механикиMe Eд диэл. --U +проводника все свободные е сосредоточены на

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиповерхности проводника. На обкладке, представляющей

собой ПП будет наведён такой же заряд, что и в провод

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики нике, однако, он будет распределён неравномерно в глубь

Элементы квантовой механики кристалла.

Поле в диэлектрике, ввиду отсутствия объёмных

X зарядов, постоянно. В ПП р-типа, при подаче +U

на ПП, на границе ПП – диэлектрик концентрация

U изменений р – типа увеличивается, следовательно, увеличивается и проводимость. Увеличение концентрации оситных носителей в слое называется обогащением (уменьшение – объединением при неизменной полярности U ). По мере уменьшения d эффект поля может исчезнуть за счёт пробоя диэлектрика. Даже если диэлектрик – вакуум, возможен туннельный эффект. Глубина проникновения поля в ПП (фактически, толщина обогащённого слоя) называется длиной Дебая (дебаевская длина). ЭЛЕКТРОННО-ДЫРОЧНЫЕ ПЕРЕХОДЫ

В подавляющем большинстве случаев в микроэлектронике находят применение так называемые p-n переходы, возникающие на границе металл – полупроводник и полупроводник – полупроводник. Комбинация двух ПП различной проводимости обладают вентильными свойствами, т.е. они лучше пропускают поток в одном (прямом) направлении. Практически все реальные p-n переходы - плавные, т.е. в районе металли

p-n переход ческой границы концентрация одних примесей

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

p n
постоянно растёт, а других – убывает. Сама металли

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики ческая граница характеризуется равенством p=n.

Как правило, концентрация p и n вне границы

металлическая граница существенно различаются, и такие p-n переходы

называются асимметричными (несимметричными).



Т.к концентрация n >, то число электронов, диффундирующих в область р больше, чем число диффундирующих «дырок» и в слое р вблизи границы оказываются избыточные е, ре-комбинирующие с «дырками» до тех пор, пока не будет равновесия. Следовательно, концентрация «дырок» уменьшится. Аналогично можно рассуждать и по отношению к «дыркам».

Например:

Элементы квантовой механики асимметрия

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиn n,p

Элементы квантовой механикиЭлементы квантовой механики

Элементы квантовой механики

идеальный

Элементы квантовой механикиЭлементы квантовой механикипереход

Элементы квантовой механики


Элементы квантовой механики Х


В идеале считают, что в p-n переходе Ширина перехода (d)

вообще отсутствуют носители и сам p-n переход является наиболее высокоомной частью структуры. Т.к. концентрация p и n различна, то между p и n областями, разделёнными высокоомным переходом, возникает потенциальный барьер. Если к переходу приложить напряжение + и к p-области (такая полярность называется прямой), то высота потенциального барьера уменьшится и


уменьшится его ширина. При обратной номерности - высота барьера и его

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики

n p


ширина увеличатся. При прямых напряжениях в каждой из областей появляются избыточные носители и тогда говорят об инжекции носителей, если напряжение обратное, то количество носителей уменьшается, и говорят об

Элементы квантовой механики·- + ·Элементы квантовой механики

(+) (-)


экстракции носителейЭлементы квантовой механики. Причём, если переход симметричный, то инжекция ( экстракция) е и «дырок» - одинаковая. Если переход асимметричный, то считают, что инжекция имеет односторонний характер и главную роль играют носители, инжектируемые из низкоомного (легированного) слоя в высокоомный. Низкоомный (более легированный) слой эмиттером, а высокоомный – базой. Таким образом, если к p-n переходу приложить прямое напряжение, то это приводит к изменению концентрации инжектированных носителей в области базы, а следовательно, изменяется и величина накопленного заряда, обусловленного этими зарядами. Процесс накопления избыточного заряда эквивалентен процессу заряда ёмкости. Поэтому говорят, что p-n переход обладает диффузионной ёмкостью.

Помимо диффузионной p-n переход обладает и барьерной (зарядной) ёмкостью (Сб) (если к p-n переходу приложить обратное напряжение, то на металлической границе носители отсутствуют и мы имеем ярко выраженную ёмкость). Сд и Сб – нелинейные ёмкости. Сд в основном проявляется при прямом включении диода, а Сб – при обратном. Первая зависит от тока Iпр, вторая – от Uобр. Строго говоря, такое разделение чисто условное, но оно удобно при анализе переходных процессов.

Элементы квантовой механикиЭлементы квантовой механикиСд и Сб существенно влияют на частотные свойства p-n перехода. Аналитически можно показать, что ВАХ такого p-n перехода описывается экспоненциальной зависимостью (Степаненко стр 82) вида: I/I0

I = I0(e(U/jт) – 1), где

Элементы квантовой механикиjт – температурный потенциал ~ 25 милливольт

Элементы квантовой механикиЭлементы квантовой механикиI0 – тепловой ток, сильно зависящий от Т° p-n перехода. · ·

Можно доказать, что:Элементы квантовой механики24 U/jт

I0(Т) = I0(Т0)2 DТ/Т*, где

Т0 – средняя температура некоторого температурного диапазона, например - комнатная

DТ – температура - градиент

Т* - так называемая температура удвоения.

В частности для кремния:

I0(Т) @ I0(20°С)2 (Т-20°С /10°С)

Т.е. считают, что I0 изменяется в 2 раза при изменении Т перехода на 10°С (по другим источникам Т* = 5°С).

Прямая ветвь ВАХ довольно крутая и можно считать, что падение U на таком переходе = const практически во всём диапазоне изменения рабочих токов, и при расчётах, обычно, полагают, что

Uдиода пр = 0,7В для нормального режима и

Uдиода пр @ 0,5В на микротоках

ПРОБОЙ P-N ПЕРЕХОДА

На приведённой выше ВАХ изображён только начальный участок обратной ветви. Как пойдёт обратная ветвь при дальнейшем увеличении Uобр?

Дальше – пробой p-n перехода.

Элементы квантовой механикиРазличают три вида (механизма) пробоя: лавинный, туннельный и тепловой.

А) Лавинный пробой происходит если Uобр

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механики ширина p-n перехода (d) больше длины

Элементы квантовой механикиЭлементы квантовой механики свободного пробега.

d³ l

Элементы квантовой механикиВ этом случае, не основные носители, ускоряясь Uпробоя в переходе, могут приобрести энергию, достаточную

для ионизации атомов кристаллической решётки.

Выбитые е в свою очередь, ускоряясь, принимают

Элементы квантовой механикиЭлементы квантовой механикиЭлементы квантовой механикиучастие в дальнейшей ионизации. Процесс 1 2 3 I обр носит лавинный характер (ветвь 1).

Скорость нарастания тока характеризуется коэффициентом ударной ионизации,

который зависит в основном от распределения примесей (строго говоря – от

напряжённости электрического поля Е в данной точке). При таком пробое

rp-n = dU/dI

резко уменьшается. Однако, напряжение Up-n не может стать ниже Uпробоя т.к. Е станет < Е ионизации. Поэтому ветвь почти строго вертикальна.

Этот пробой используют для создания ПП приборов – стабилитронов (дать параметры и схему).

В) Туннельный пробой(ветвь 2).

Если d < l, то лавинный пробой невозможен, т.к. носители практически не сталкиваются с атомами решётки. Но возможно туннелирование носителей (см. туннельный эффект). Для уменьшения вероятности такого пробоя, базу изготавливают низколегированной (с высоким сопротивлением), а также увеличивают d (тогда U пробоя увеличивается).

С) Тепловой пробой.

Обратный ток p-n перехода повышает температуру перехода, что, в свою очередь, приводит к увеличению обратного тока и т.д. Если не принимать мер по отводу тепла, то саморазогрев перехода может привести к тепловому пробою (кривая 3).

Отличительная особенность – участок с отрицательным дифференциальным сопротивлением. Iобр зависит от ширины запрещённой зоны, поэтому тепловой пробой при прочих равных условиях чаще будет наблюдаться в Ge, чем в Si. Обычно I обр малы и тепловой пробой сам по себе редко наступает, но может возникнуть, как сопутствующий лавинному или туннельному пробоям. Если в схеме нет строго ограничивающих компонентов, то тепловой пробой приводит к невозвратимому разрушению прибора.

КРАТКАЯ ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ ТИПОВ ПП ДИОДОВ

1) Стабилитроны – имеют оригинальную обратную ветвь ВАХ(лавинный пробой)

2) Туннельные диоды (ТД) – Основаны на туннельном эффекте. Прямая ветвь ВАХ такого диода имеет участок с отрицательным дифференциальным

Сопротивлением, что позволяет создавать генераторы, смесители, I

Переключатели на основе таких p-n переходов. ТД работают

только на основных носителях, следовательно, Сдифф = 0,

поэтому частотные свойства высокие. Изготавливаются ТД

из сильнолегированных ПП. U

3) Импульсные, высокочастотные и СВЧ диоды. Т.к. обычный p-n переход обладает Сд и Сб, и является инерционным прибором, то на время накопления и рассасывания заряда а базе p-n переход теряет выпрямительные свойства. Для характеристики этих свойств p-n перехода принято 2 параметра:

а) время установления rпрямое

в) время восстановления rобратное

Чем меньше эти времена, тем выше частотные свойства

Импульсные fпереключателя > 1мГц

Вч fпереключателя > 150мГц

ВЧ fпереключателя > 1ГГц

4) Диоды Шоттки образуются на границе металл – полупроводник. Работает только на основных носителях (Сд = 0). Уменьшая площадь перехода, уменьшают Сб. Поэтому fпереключателя = 3 – 15 ГГц.

Применяется очень широко.

5) Фотодиоды – основаны на изменениях проводимости в зависимости от освещённости.

6) Светодиоды – используется явление изменения света в некоторых широкозонных ПП (фосфид галия, карбид кремния и т. д.) при рекомбинации е и «дырок».

Гетеропереходы, диоды с накоплением заряда, варикапы, параметрические диоды,

инжекупонные фотодиоды, фотоэлементы координатно-чувствительные фотоприёмники, лазер на основе p-n перехода, инжекупонный гетеролазер, варисторы – особенности этих специфических p-n переходов

см. (6) Вакулин, Стафеев «Физика ПП приборов».

Ранее были гомопереходы.

Гетеропереход – переход между ПП различной физико – химической природы (например Si – Ge, Si – GaAs, GaAs – GaP(фосфид галия)), причём это не обязательно p-n переходы, могут быть и n-n, p-p (различная ширина запрещённой зоны в полупроводниках)

Диоды с накоплением заряда – для формирования фронтовых сигналов.

Вариканы – ёмкость(барьерная), управляемая U

Варисторы – нелинейное полупроводниковое сопротивление

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ(Т)

Транзистором называют ПП прибор, обладающий усилительными свойствами по мощности. Именно усиление мощности характеризует транзистор, как усилительный прибор. Нельзя говорить о транзисторе, как об усилителе тока. Тогда трансформатор тока является усилителем